Menu Close

How-many-axes-of-symmetry-does-an-open-angle-have-




Question Number 204916 by hardmath last updated on 01/Mar/24
  How many axes of symmetry does an open angle have?
$$ \\ $$How many axes of symmetry does an open angle have?
Commented by mr W last updated on 02/Mar/24
what do mean with an open angle?
$${what}\:{do}\:{mean}\:{with}\:{an}\:{open}\:{angle}? \\ $$
Commented by hardmath last updated on 02/Mar/24
dear professor,  an angle equal to 180 degrees
$$\mathrm{dear}\:\mathrm{professor}, \\ $$$$\mathrm{an}\:\mathrm{angle}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{180}\:\mathrm{degrees} \\ $$
Commented by mr W last updated on 02/Mar/24
an angle equal to 180° is actually  no longer an angle.
$${an}\:{angle}\:{equal}\:{to}\:\mathrm{180}°\:{is}\:{actually} \\ $$$${no}\:{longer}\:{an}\:{angle}. \\ $$
Commented by hardmath last updated on 02/Mar/24
  right angle, blind angle, open angle, full angle
$$ \\ $$right angle, blind angle, open angle, full angle
Commented by hardmath last updated on 02/Mar/24
  Types of angle
$$ \\ $$Types of angle
Commented by mr W last updated on 02/Mar/24
it′s actually not an angle, because it  doesn′t have a corner. this is why  you ask the question. since it doesn′t  have a corner, you can′t determine  whether it has one or infinite or no  axis of symmetry.
$${it}'{s}\:{actually}\:{not}\:{an}\:{angle},\:{because}\:{it} \\ $$$${doesn}'{t}\:{have}\:{a}\:{corner}.\:{this}\:{is}\:{why} \\ $$$${you}\:{ask}\:{the}\:{question}.\:{since}\:{it}\:{doesn}'{t} \\ $$$${have}\:{a}\:{corner},\:{you}\:{can}'{t}\:{determine} \\ $$$${whether}\:{it}\:{has}\:{one}\:{or}\:{infinite}\:{or}\:{no} \\ $$$${axis}\:{of}\:{symmetry}. \\ $$
Commented by mr W last updated on 02/Mar/24
all is just a question of definition.  per definition an angle has one and   only one axis of symmetry (the angle  bisector). if you accept that an open   angle is a normal angle, then it also  has one and only one axis of   symmetry.
$${all}\:{is}\:{just}\:{a}\:{question}\:{of}\:{definition}. \\ $$$${per}\:{definition}\:{an}\:{angle}\:{has}\:{one}\:{and}\: \\ $$$${only}\:{one}\:{axis}\:{of}\:{symmetry}\:\left({the}\:{angle}\right. \\ $$$$\left.{bisector}\right).\:{if}\:{you}\:{accept}\:{that}\:{an}\:{open}\: \\ $$$${angle}\:{is}\:{a}\:{normal}\:{angle},\:{then}\:{it}\:{also} \\ $$$${has}\:{one}\:{and}\:{only}\:{one}\:{axis}\:{of}\: \\ $$$${symmetry}. \\ $$
Commented by hardmath last updated on 02/Mar/24
  I understand, the answer is how many, one or two
$$ \\ $$I understand, the answer is how many, one or two
Commented by hardmath last updated on 02/Mar/24
thank you dear professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *