Menu Close

lim-n-n-e-x-n-where-x-n-1-1-1-1-2-1-n-




Question Number 204900 by universe last updated on 01/Mar/24
     lim_(n→∞)  n!(e−x_n ) = ?    where x_(n ) = 1+(1/(1!))+(1/(2!))+...+(1/(n!))
$$\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}!\left({e}−\mathrm{x}_{\mathrm{n}} \right)\:=\:? \\ $$$$\:\:\mathrm{where}\:\mathrm{x}_{\mathrm{n}\:} =\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+…+\frac{\mathrm{1}}{\mathrm{n}!} \\ $$
Commented by Frix last updated on 01/Mar/24
x_n →e ⇒ Answer is 0
$${x}_{{n}} \rightarrow\mathrm{e}\:\Rightarrow\:\mathrm{Answer}\:\mathrm{is}\:\mathrm{0} \\ $$
Commented by JDamian last updated on 02/Mar/24
But    n! → ∞    ⇒   ∞∙0
$${But}\:\:\:\:{n}!\:\rightarrow\:\infty\:\:\:\:\Rightarrow\:\:\:\infty\centerdot\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *