Menu Close

16-y-x-2-16-y-2-x-1-x-y-




Question Number 204920 by cortano12 last updated on 02/Mar/24
     16^(y+x^2 )  + 16^(y^2 +x)  = 1       x+y =?
$$\:\:\:\:\:\mathrm{16}^{\mathrm{y}+\mathrm{x}^{\mathrm{2}} } \:+\:\mathrm{16}^{\mathrm{y}^{\mathrm{2}} +\mathrm{x}} \:=\:\mathrm{1}\: \\ $$$$\:\:\:\:\mathrm{x}+\mathrm{y}\:=? \\ $$
Answered by witcher3 last updated on 02/Mar/24
16^(y+x^2 ) +16^(y^2 +x) =1⇒ AM−GM  2(√(16^(y+x^2 +y^2 +x) ))≤1  ⇔2.2^(2(y+x^2 +y^2 +x)) ≤2^0   y+x+x^2 +y^2 ≤−(1/2)  (x+(1/2))^2 +(y+(1/2))^2 ≤0  ⇒(x=−(1/2);y=−(1/2))  x^2 +y=y^2 +x=−(1/4)⇔16^(−(1/4)) +16^(−(1/4)) =1 True  x+y=−1 &(x=y)
$$\mathrm{16}^{\mathrm{y}+\mathrm{x}^{\mathrm{2}} } +\mathrm{16}^{\mathrm{y}^{\mathrm{2}} +\mathrm{x}} =\mathrm{1}\Rightarrow\:\mathrm{AM}−\mathrm{GM} \\ $$$$\mathrm{2}\sqrt{\mathrm{16}^{\mathrm{y}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{x}} }\leqslant\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{2}.\mathrm{2}^{\mathrm{2}\left(\mathrm{y}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{x}\right)} \leqslant\mathrm{2}^{\mathrm{0}} \\ $$$$\mathrm{y}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \leqslant−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{y}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \leqslant\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{x}=−\frac{\mathrm{1}}{\mathrm{2}};\mathrm{y}=−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}=\mathrm{y}^{\mathrm{2}} +\mathrm{x}=−\frac{\mathrm{1}}{\mathrm{4}}\Leftrightarrow\mathrm{16}^{−\frac{\mathrm{1}}{\mathrm{4}}} +\mathrm{16}^{−\frac{\mathrm{1}}{\mathrm{4}}} =\mathrm{1}\:\mathrm{True} \\ $$$$\mathrm{x}+\mathrm{y}=−\mathrm{1}\:\&\left(\mathrm{x}=\mathrm{y}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *