Menu Close

factorizar-x-4-1-




Question Number 204979 by Simurdiera last updated on 04/Mar/24
factorizar  x^4  + 1
factorizarx4+1
Answered by Skabetix last updated on 04/Mar/24
=(x−x_0 )(x−x_1 )(x−x_2 )(x−x_3 )  =(x−e^(i(Π/4)) )(x−e^((3iΠ)/4) )(x−e^((5iΠ)/4) )(x−e^((7iΠ)/4) )  =(x^2 −x(√)2+1)(x^2 +x(√)2+1)
=(xx0)(xx1)(xx2)(xx3)=(xeiΠ4)(xe3iΠ4)(xe5iΠ4)(xe7iΠ4)=(x2x2+1)(x2+x2+1)
Answered by Frix last updated on 04/Mar/24
x^4 +1=  =(x^2 −(√2)x+1)(x^2 +(√2)x+1)=  =(x−((√2)/2)−((√2)/2)i)(x+((√2)/2)+((√2)/2)i)(x−((√2)/2)+((√2)/2)i)(x+((√2)/2)−((√2)/2)i)
x4+1==(x22x+1)(x2+2x+1)==(x2222i)(x+22+22i)(x22+22i)(x+2222i)
Answered by mr W last updated on 04/Mar/24
=x^4 −i^2   =(x^2 +i)(x^2 −i)  =(x^2 −(((−(√2)+(√2)i)/2))^2 )(x^2 −((((√2)+i(√2))/2))^2 )  =(x+((−(√2)+(√2)i)/2))(x−((−(√2)+(√2)i)/2))(x+(((√2)+i(√2))/2))(x−(((√2)+(√2)i)/2))
=x4i2=(x2+i)(x2i)=(x2(2+2i2)2)(x2(2+i22)2)=(x+2+2i2)(x2+2i2)(x+2+i22)(x2+2i2)
Answered by MATHEMATICSAM last updated on 05/Mar/24
x^4  + 1  = (x^2 )^2  + 2x^2  + 1 − 2x^2   = (x^2  + 1)^2  − ((√2)x)^2   = (x^2  + (√2)x + 1)(x^2  − (√2)x + 1)
x4+1=(x2)2+2x2+12x2=(x2+1)2(2x)2=(x2+2x+1)(x22x+1)

Leave a Reply

Your email address will not be published. Required fields are marked *