Menu Close

Question-204970




Question Number 204970 by mr W last updated on 04/Mar/24
Commented by mr W last updated on 04/Mar/24
the vertices of triangle PQR lie on  each of the three touching circles  with radii a, b, c respectively.  find the maximum area of the  triangle.
theverticesoftrianglePQRlieoneachofthethreetouchingcircleswithradiia,b,crespectively.findthemaximumareaofthetriangle.
Answered by mr W last updated on 02/May/24
Commented by mr W last updated on 02/May/24
Δ=(√(abc(a+b+c)))  R=((abc)/(4Δ))=(1/4)(√((abc)/(a+b+c)))  sin ∠A=((2R)/(b+c))=(1/(2(b+c)))(√((abc)/(a+b+c)))  sin ∠B=((2R)/(c+a))=(1/(2(c+a)))(√((abc)/(a+b+c)))  sin ∠C=((2R)/(a+b))=(1/(2(a+b)))(√((abc)/(a+b+c)))  cos ∠A=(((c+a)^2 +(a+b)^2 −(b+c)^2 )/(2(c+a)(a+b)))=((a(a+b+c)−bc)/((c+a)(a+b)))  cos ∠B=(((a+b)^2 +(b+c)^2 −(c+a)^2 )/(2(a+b)(b+c)))=((b(a+b+c)−ca)/((a+b)(b+c)))  cos ∠C=(((b+c)^2 +(c+a)^2 −(a+b)^2 )/(2(b+c)(c+a)))=((c(a+b+c)−ab)/((b+c)(c+a)))  α+β+γ=2π  according to Q206922  sin (α−∠A)=sin α cos ∠A−cos α sin ∠A  sin (α−∠A)=((a(a+b+c)−bc)/((c+a)(a+b)))×sin α−(1/(2(b+c)))(√((abc)/(a+b+c)))×cos α  (c+a)(a+b) sin (α−∠A)=[a(a+b+c)−bc] sin α−(((c+a)(a+b))/(2(b+c)))(√((abc)/(a+b+c)))×cos α  cos (α−∠A)=cos α cos ∠A+sin α sin ∠A  cos (α−∠A)=((a(a+b+c)−bc)/((c+a)(a+b)))×cos α+(1/(2(b+c)))(√((abc)/(a+b+c)))×sin α  (c+a)(a+b)cos  (α−∠A)=[a(a+b+c)−bc] cos α+(((c+a)(a+b))/(2(b+c)))(√((abc)/(a+b+c)))×sin α  x=(((c+a)(a+b) sin (α−∠A))/( (√((c+a)^2 sin^2  γ+(a+b)^2 sin^2  β+2(c+a)(a+b) sin β sin γ cos (α−∠A)))))  ⇒x=(([a(a+b+c)−bc] sin α−(((c+a)(a+b))/(2(b+c)))(√((abc)/(a+b+c)))×cos α)/( (√((c+a)^2 sin^2  γ+(a+b)^2 sin^2  β+2 sin β sin γ {[a(a+b+c)−bc] cos α+(((c+a)(a+b))/(2(b+c)))(√((abc)/(a+b+c)))×sin α}))))  y=(((a+b)(b+c) sin (β−∠B))/( (√((a+b)^2 sin^2  α+(b+c)^2 sin^2  γ+2(a+b)(b+c) sin γ sin a cos (β−∠B)))))  z=(((b+c)(c+a) sin (γ−∠C))/( (√((b+c)^2 sin^2  β+(c+a)^2 sin^2  α+2(b+c)(c+a) sin α sin β cos (γ−∠C)))))  p=(√((y+b)^2 +(z+c)^2 −2(y+b)(z+c) cos α))  q=(√((z+c)^2 +(x+a)^2 −2(z+c)(x+a) cos β))  r=(√((x+a)^2 +(y+b)^2 −2(x+a)(y+b) cos γ))  ((sin ∠Q_2 )/(z+c))=((sin ∠R_1 )/(y+b))=((sin α)/p)  ⇒sin ∠Q_2 =(((z+c) sin α)/( (√((y+b)^2 +(z+c)^2 −2(y+b)(z+c) cos α))))  ⇒sin ∠R_1 =(((y+b) sin α)/( (√((y+b)^2 +(z+c)^2 −2(y+b)(z+c) cos α))))  similarly  sin ∠R_2 =(((x+a) sin β)/( (√((z+c)^2 +(x+a)^2 −2(z+c)(x+a) cos β))))  sin ∠P_1 =(((z+c) sin β)/( (√((z+c)^2 +(x+a)^2 −2(z+c)(x+a) cos β))))  sin ∠P_2 =(((y+b) sin γ)/( (√((x+a)^2 +(y+b)^2 −2(x+a)(y+b) cos γ))))  sin ∠Q_1 =(((x+a) sin γ)/( (√((x+a)^2 +(y+b)^2 −2(x+a)(y+b) cos γ))))  ∠P_1 =∠Q_2   ⇒(((z+c) sin β)/( (√((z+c)^2 +(x+a)^2 −2(z+c)(x+a) cos β))))=(((z+c) sin α)/( (√((y+b)^2 +(z+c)^2 −2(y+b)(z+c) cos α))))  ⇒((sin α)/(sin β))=((√((y+b)^2 +(z+c)^2 −2(y+b)(z+c) cos α))/( (√((z+c)^2 +(x+a)^2 −2(z+c)(x+a) cos β))))   ...(i)  ∠Q_1 =∠R_2   ⇒(((x+a) sin γ)/( (√((x+a)^2 +(y+b)^2 −2(x+a)(y+b) cos γ))))=(((x+a) sin β)/( (√((z+c)^2 +(x+a)^2 −2(z+c)(x+a) cos β))))  ⇒((sin β)/(sin γ))=((√((z+c)^2 +(x+a)^2 −2(z+c)(x+a) cos β))/( (√((x+a)^2 +(y+b)^2 −2(x+a)(y+b) cos γ))))   ...(ii)  ∠R_1 =∠P_2   ⇒(((y+b) sin α)/( (√((y+b)^2 +(z+c)^2 −2(y+b)(z+c) cos α))))=(((y+b) sin γ)/( (√((x+a)^2 +(y+b)^2 −2(x+a)(y+b) cos γ))))  ⇒((sin γ)/(sin α))=((√((x+a)^2 +(y+b)^2 −2(x+a)(y+b) cos γ))/( (√((y+b)^2 +(z+c)^2 −2(y+b)(z+c) cos α))))   ...(iii)  two of these three equations can be  solved to get α, β and γ.
Δ=abc(a+b+c)R=abc4Δ=14abca+b+csinA=2Rb+c=12(b+c)abca+b+csinB=2Rc+a=12(c+a)abca+b+csinC=2Ra+b=12(a+b)abca+b+ccosA=(c+a)2+(a+b)2(b+c)22(c+a)(a+b)=a(a+b+c)bc(c+a)(a+b)cosB=(a+b)2+(b+c)2(c+a)22(a+b)(b+c)=b(a+b+c)ca(a+b)(b+c)cosC=(b+c)2+(c+a)2(a+b)22(b+c)(c+a)=c(a+b+c)ab(b+c)(c+a)α+β+γ=2πaccordingtoQ206922sin(αA)=sinαcosAcosαsinAsin(αA)=a(a+b+c)bc(c+a)(a+b)×sinα12(b+c)abca+b+c×cosα(c+a)(a+b)sin(αA)=[a(a+b+c)bc]sinα(c+a)(a+b)2(b+c)abca+b+c×cosαcos(αA)=cosαcosA+sinαsinAcos(αA)=a(a+b+c)bc(c+a)(a+b)×cosα+12(b+c)abca+b+c×sinα(c+a)(a+b)cos(αA)=[a(a+b+c)bc]cosα+(c+a)(a+b)2(b+c)abca+b+c×sinαx=(c+a)(a+b)sin(αA)(c+a)2sin2γ+(a+b)2sin2β+2(c+a)(a+b)sinβsinγcos(αA)x=[a(a+b+c)bc]sinα(c+a)(a+b)2(b+c)abca+b+c×cosα(c+a)2sin2γ+(a+b)2sin2β+2sinβsinγ{[a(a+b+c)bc]cosα+(c+a)(a+b)2(b+c)abca+b+c×sinα}y=(a+b)(b+c)sin(βB)(a+b)2sin2α+(b+c)2sin2γ+2(a+b)(b+c)sinγsinacos(βB)z=(b+c)(c+a)sin(γC)(b+c)2sin2β+(c+a)2sin2α+2(b+c)(c+a)sinαsinβcos(γC)p=(y+b)2+(z+c)22(y+b)(z+c)cosαq=(z+c)2+(x+a)22(z+c)(x+a)cosβr=(x+a)2+(y+b)22(x+a)(y+b)cosγsinQ2z+c=sinR1y+b=sinαpsinQ2=(z+c)sinα(y+b)2+(z+c)22(y+b)(z+c)cosαsinR1=(y+b)sinα(y+b)2+(z+c)22(y+b)(z+c)cosαsimilarlysinR2=(x+a)sinβ(z+c)2+(x+a)22(z+c)(x+a)cosβsinP1=(z+c)sinβ(z+c)2+(x+a)22(z+c)(x+a)cosβsinP2=(y+b)sinγ(x+a)2+(y+b)22(x+a)(y+b)cosγsinQ1=(x+a)sinγ(x+a)2+(y+b)22(x+a)(y+b)cosγP1=Q2(z+c)sinβ(z+c)2+(x+a)22(z+c)(x+a)cosβ=(z+c)sinα(y+b)2+(z+c)22(y+b)(z+c)cosαsinαsinβ=(y+b)2+(z+c)22(y+b)(z+c)cosα(z+c)2+(x+a)22(z+c)(x+a)cosβ(i)Q1=R2(x+a)sinγ(x+a)2+(y+b)22(x+a)(y+b)cosγ=(x+a)sinβ(z+c)2+(x+a)22(z+c)(x+a)cosβsinβsinγ=(z+c)2+(x+a)22(z+c)(x+a)cosβ(x+a)2+(y+b)22(x+a)(y+b)cosγ(ii)R1=P2(y+b)sinα(y+b)2+(z+c)22(y+b)(z+c)cosα=(y+b)sinγ(x+a)2+(y+b)22(x+a)(y+b)cosγsinγsinα=(x+a)2+(y+b)22(x+a)(y+b)cosγ(y+b)2+(z+c)22(y+b)(z+c)cosα(iii)twoofthesethreeequationscanbesolvedtogetα,βandγ.

Leave a Reply

Your email address will not be published. Required fields are marked *