Menu Close

Question-204991




Question Number 204991 by tigrecomplexe last updated on 04/Mar/24
Commented by tigrecomplexe last updated on 05/Mar/24
sommeone can put hand here please ?
sommeonecanputhandhereplease?
Answered by witcher3 last updated on 05/Mar/24
u_n =lim_(n→∞) e^(sin(2π(√(1+n^2 )))Σ_(k=1) ^n ((ln(1+(k/n)))/2))   sin(2π(√(1+n^2 )))=sin(2πn(1+(1/n^2 ))^(1/2) )  (1+(1/n^2 ))^(1/2) =1+(1/(2n^2 ))+o((1/n^2 ))  sin(2π(√(1+n^2 )))=^(n→∞) sin(2πn+(π/n)+o((1/n)))=sin((π/n)+o((1/n)))  sin(2π(√(1+n^2 )))=^∞ (π/n)+o((1/n))  u_n =e^(nsin(2π(√(1+n^2 ))).(1/(2n))Σ_(k=1) ^n ln(1+(k/n)))   lim_(n→∞) .(1/2).(1/n)Σ_(k=1) ^n ln(1+(k/n))=∫_0 ^1 ((ln(1+x))/2)=[(((1+x))/2)ln(1+x)−(x/2)]_0 ^1 =ln(2)−(1/2)  lim_(n→∞) .nsin(2π(√(1+n^2 )))=lim_(n→∞)  n.((π/n))=π  U_n →e^(π(ln(2)−(1/2))) =((2π)/e^(π/2) )
un=limensin(2π1+n2)nk=1ln(1+kn)2sin(2π1+n2)=sin(2πn(1+1n2)12)(1+1n2)12=1+12n2+o(1n2)sin(2π1+n2)=nsin(2πn+πn+o(1n))=sin(πn+o(1n))sin(2π1+n2)=πn+o(1n)un=ensin(2π1+n2).12nnk=1ln(1+kn)limn.12.1nnk=1ln(1+kn)=01ln(1+x)2=[(1+x)2ln(1+x)x2]01=ln(2)12limn.nsin(2π1+n2)=limnn.(πn)=πUneπ(ln(2)12)=2πeπ2
Answered by Mathspace last updated on 05/Mar/24
A_n =(Π_(k=1) ^n (√(1+(k/n))))^(sin(2π(√(1+n^2 ))))   ⇒log(A_n )=sin(2π(√(1+n^2 )))Σ_(k=1) ^n log((√(1+(k/n))))  (√(1+n^2 ))=n(√(1+(1/n^2 )))=n(1+(1/n^2 ))^(1/2)   ∼n(1+(1/(2n^2 )))=n+(1/(2n)) ⇒  sin(2π(√(1+n^2 )))∼sin(2πn+(π/n))  =sin((π/n))∼(π/n) ⇒  log(A_n )∼(π/n)Σ_(k=1) ^n log(√(1+(k/n)))  Reiman sum give  lim_(n→+∞) log(A_n )  =π∫_0 ^1 log(√(1+x))dx  =(π/2)∫_0 ^1 log(1+x)dx but  ∫_0 ^1 log(1+x)dx=  [xlog(1+x)]_0 ^1 −∫_0 ^1 (x/(1+x))dx  =log2−∫_0 ^1 ((1+x−1)/(1+x))dx  =log2−1+∫_0 ^1 (dx/(1+x))  =log2−1+[log(1+x)]_0 ^1   =log2−1+log2=2log2−1  lim log(A_n )=(π/2)(2log2−1)  =πlog2−(π/2) ⇒  lim_(n→+∞) A_n =e^(πlog2−(π/2))   =2^π ×e^(−(π/2))
An=(k=1n1+kn)sin(2π1+n2)log(An)=sin(2π1+n2)k=1nlog(1+kn)1+n2=n1+1n2=n(1+1n2)12n(1+12n2)=n+12nsin(2π1+n2)sin(2πn+πn)=sin(πn)πnlog(An)πnk=1nlog1+knReimansumgivelimn+log(An)=π01log1+xdx=π201log(1+x)dxbut01log(1+x)dx=[xlog(1+x)]0101x1+xdx=log2011+x11+xdx=log21+01dx1+x=log21+[log(1+x)]01=log21+log2=2log21limlog(An)=π2(2log21)=πlog2π2limn+An=eπlog2π2=2π×eπ2

Leave a Reply

Your email address will not be published. Required fields are marked *