Question Number 204991 by tigrecomplexe last updated on 04/Mar/24
Commented by tigrecomplexe last updated on 05/Mar/24
$${sommeone}\:{can}\:{put}\:{hand}\:{here}\:{please}\:? \\ $$
Answered by witcher3 last updated on 05/Mar/24
$$\mathrm{u}_{\mathrm{n}} =\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}e}^{\mathrm{sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\right)\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)}{\mathrm{2}}} \\ $$$$\mathrm{sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\right)=\mathrm{sin}\left(\mathrm{2}\pi\mathrm{n}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \right) \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2n}^{\mathrm{2}} }+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right) \\ $$$$\mathrm{sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\right)\overset{\mathrm{n}\rightarrow\infty} {=}\mathrm{sin}\left(\mathrm{2}\pi\mathrm{n}+\frac{\pi}{\mathrm{n}}+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right)=\mathrm{sin}\left(\frac{\pi}{\mathrm{n}}+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right) \\ $$$$\mathrm{sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\right)\overset{\infty} {=}\frac{\pi}{\mathrm{n}}+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}}\right) \\ $$$$\mathrm{u}_{\mathrm{n}} =\mathrm{e}^{\mathrm{nsin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\right).\frac{\mathrm{1}}{\mathrm{2n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}.\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{2}}=\left[\frac{\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)−\frac{\mathrm{x}}{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{ln}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}.\mathrm{nsin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\right)=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}.\left(\frac{\pi}{\mathrm{n}}\right)=\pi \\ $$$$\mathrm{U}_{\mathrm{n}} \rightarrow\mathrm{e}^{\pi\left(\mathrm{ln}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}\right)} =\frac{\mathrm{2}\pi}{\mathrm{e}^{\frac{\pi}{\mathrm{2}}} } \\ $$$$ \\ $$
Answered by Mathspace last updated on 05/Mar/24
$${A}_{{n}} =\left(\prod_{{k}=\mathrm{1}} ^{{n}} \sqrt{\mathrm{1}+\frac{{k}}{{n}}}\right)^{{sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\right)} \\ $$$$\Rightarrow{log}\left({A}_{{n}} \right)={sin}\left(\mathrm{2}\pi\sqrt{\left.\mathrm{1}+{n}^{\mathrm{2}} \right)}\sum_{{k}=\mathrm{1}} ^{{n}} {log}\left(\sqrt{\mathrm{1}+\frac{{k}}{{n}}}\right)\right. \\ $$$$\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }={n}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }}={n}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\sim{n}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\right)={n}+\frac{\mathrm{1}}{\mathrm{2}{n}}\:\Rightarrow \\ $$$${sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\right)\sim{sin}\left(\mathrm{2}\pi{n}+\frac{\pi}{{n}}\right) \\ $$$$={sin}\left(\frac{\pi}{{n}}\right)\sim\frac{\pi}{{n}}\:\Rightarrow \\ $$$${log}\left({A}_{{n}} \right)\sim\frac{\pi}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} {log}\sqrt{\mathrm{1}+\frac{{k}}{{n}}} \\ $$$${Reiman}\:{sum}\:{give} \\ $$$${lim}_{{n}\rightarrow+\infty} {log}\left({A}_{{n}} \right) \\ $$$$=\pi\int_{\mathrm{0}} ^{\mathrm{1}} {log}\sqrt{\mathrm{1}+{x}}{dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left(\mathrm{1}+{x}\right){dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left(\mathrm{1}+{x}\right){dx}= \\ $$$$\left[{xlog}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\mathrm{1}+{x}}{dx} \\ $$$$={log}\mathrm{2}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+{x}−\mathrm{1}}{\mathrm{1}+{x}}{dx} \\ $$$$={log}\mathrm{2}−\mathrm{1}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}} \\ $$$$={log}\mathrm{2}−\mathrm{1}+\left[{log}\left(\mathrm{1}+{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$={log}\mathrm{2}−\mathrm{1}+{log}\mathrm{2}=\mathrm{2}{log}\mathrm{2}−\mathrm{1} \\ $$$${lim}\:{log}\left({A}_{{n}} \right)=\frac{\pi}{\mathrm{2}}\left(\mathrm{2}{log}\mathrm{2}−\mathrm{1}\right) \\ $$$$=\pi{log}\mathrm{2}−\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} {A}_{{n}} ={e}^{\pi{log}\mathrm{2}−\frac{\pi}{\mathrm{2}}} \\ $$$$=\mathrm{2}^{\pi} ×{e}^{−\frac{\pi}{\mathrm{2}}} \\ $$$$ \\ $$