Question-204991 Tinku Tara March 4, 2024 Limits 0 Comments FacebookTweetPin Question Number 204991 by tigrecomplexe last updated on 04/Mar/24 Commented by tigrecomplexe last updated on 05/Mar/24 sommeonecanputhandhereplease? Answered by witcher3 last updated on 05/Mar/24 un=limen→∞sin(2π1+n2)∑nk=1ln(1+kn)2sin(2π1+n2)=sin(2πn(1+1n2)12)(1+1n2)12=1+12n2+o(1n2)sin(2π1+n2)=n→∞sin(2πn+πn+o(1n))=sin(πn+o(1n))sin(2π1+n2)=∞πn+o(1n)un=ensin(2π1+n2).12n∑nk=1ln(1+kn)limn→∞.12.1n∑nk=1ln(1+kn)=∫01ln(1+x)2=[(1+x)2ln(1+x)−x2]01=ln(2)−12limn→∞.nsin(2π1+n2)=limn→∞n.(πn)=πUn→eπ(ln(2)−12)=2πeπ2 Answered by Mathspace last updated on 05/Mar/24 An=(∏k=1n1+kn)sin(2π1+n2)⇒log(An)=sin(2π1+n2)∑k=1nlog(1+kn)1+n2=n1+1n2=n(1+1n2)12∼n(1+12n2)=n+12n⇒sin(2π1+n2)∼sin(2πn+πn)=sin(πn)∼πn⇒log(An)∼πn∑k=1nlog1+knReimansumgivelimn→+∞log(An)=π∫01log1+xdx=π2∫01log(1+x)dxbut∫01log(1+x)dx=[xlog(1+x)]01−∫01x1+xdx=log2−∫011+x−11+xdx=log2−1+∫01dx1+x=log2−1+[log(1+x)]01=log2−1+log2=2log2−1limlog(An)=π2(2log2−1)=πlog2−π2⇒limn→+∞An=eπlog2−π2=2π×e−π2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-204978Next Next post: Question-204994 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.