Menu Close

Question-205001




Question Number 205001 by rajusasmal last updated on 05/Mar/24
Answered by TonyCWX08 last updated on 05/Mar/24
44.   x^2 −y^2   =(asec(θ)+btan(θ))^2 −(atan(θ)+bsec(θ))^2   =a^2 sec^2 (θ)+2absec(θ)tan(θ)+b^2 tan^2 (θ)−a^2 tan^2 (θ)−2abtan(θ)sec(θ)−b^2 sec^2 (θ)  =a^2 sec^2 (θ)−a^2 tan^2 (θ)+b^2 tan^2 (θ)−b^2 sec^2 (θ)  =a^2 (sec^2 (θ)−tan^2 (θ))+b^2 (tan^2 (θ)−sec^2 (θ))  =a^2 (1)+b^2 (−1)  =a^2 −b^2     45.  3sin(x)+5cos(x)=5  3sin^2 (x)+30sin(x)cos(x)+25cos^2 (x)=25  30sin(x)cos(x)=25−3sin^2 (x)−25cos^2 (x)    (5sin(x)−3cos(x))^2   =25sin^2 (x)−30sin(x)cos(x)+9cos^2 (x)  =25sin^2 (x)−(25−3sin^2 (x)−25cos^2 (x))+9cos^2 (x)  =25sin^2 (x)−25+3sin^2 (x)+25cos^2 (x)+9cos^2 (x)  =34sin^2 (x)+34cos^2 (x)−25  =34(sin^2 (x)+cos^2 (x))−25  =34−25  =9    5sin(x)−3cos(x)=±(√9)=±3
44.x2y2=(asec(θ)+btan(θ))2(atan(θ)+bsec(θ))2=a2sec2(θ)+2absec(θ)tan(θ)+b2tan2(θ)a2tan2(θ)2abtan(θ)sec(θ)b2sec2(θ)=a2sec2(θ)a2tan2(θ)+b2tan2(θ)b2sec2(θ)=a2(sec2(θ)tan2(θ))+b2(tan2(θ)sec2(θ))=a2(1)+b2(1)=a2b245.3sin(x)+5cos(x)=53sin2(x)+30sin(x)cos(x)+25cos2(x)=2530sin(x)cos(x)=253sin2(x)25cos2(x)(5sin(x)3cos(x))2=25sin2(x)30sin(x)cos(x)+9cos2(x)=25sin2(x)(253sin2(x)25cos2(x))+9cos2(x)=25sin2(x)25+3sin2(x)+25cos2(x)+9cos2(x)=34sin2(x)+34cos2(x)25=34(sin2(x)+cos2(x))25=3425=95sin(x)3cos(x)=±9=±3
Answered by TonyCWX08 last updated on 05/Mar/24
36.  x^2 +y^2 +z^2   =r^2 sin^2 (A)cos^2 (C)+r^2 sin^2 (A)sin^2 (C)+r^2 cos^2 (A)  =r^2 (sin^2 (A)(sin^2 (C)+cos^2 (C))+cos^2 (A))  =r^2 (sin^2 (A)+cos^2 (A))  =r^2 (1)  =r^2     40.  sin(x)+sin^2 (x)=1  sin^2 (x)=1−sin(x)  1−cos^2 (x)=1−sin(x)  −cos^2 (x)=−sin(x)  cos^2 (x)=sin(x)  cos^4 (x)=sin^2 (x)  cos^2 (x)+cos^4 (x)  =sin(x)+sin^2 (x)=1
36.x2+y2+z2=r2sin2(A)cos2(C)+r2sin2(A)sin2(C)+r2cos2(A)=r2(sin2(A)(sin2(C)+cos2(C))+cos2(A))=r2(sin2(A)+cos2(A))=r2(1)=r240.sin(x)+sin2(x)=1sin2(x)=1sin(x)1cos2(x)=1sin(x)cos2(x)=sin(x)cos2(x)=sin(x)cos4(x)=sin2(x)cos2(x)+cos4(x)=sin(x)+sin2(x)=1

Leave a Reply

Your email address will not be published. Required fields are marked *