Question-205001 Tinku Tara March 5, 2024 None 0 Comments FacebookTweetPin Question Number 205001 by rajusasmal last updated on 05/Mar/24 Answered by TonyCWX08 last updated on 05/Mar/24 44.x2−y2=(asec(θ)+btan(θ))2−(atan(θ)+bsec(θ))2=a2sec2(θ)+2absec(θ)tan(θ)+b2tan2(θ)−a2tan2(θ)−2abtan(θ)sec(θ)−b2sec2(θ)=a2sec2(θ)−a2tan2(θ)+b2tan2(θ)−b2sec2(θ)=a2(sec2(θ)−tan2(θ))+b2(tan2(θ)−sec2(θ))=a2(1)+b2(−1)=a2−b245.3sin(x)+5cos(x)=53sin2(x)+30sin(x)cos(x)+25cos2(x)=2530sin(x)cos(x)=25−3sin2(x)−25cos2(x)(5sin(x)−3cos(x))2=25sin2(x)−30sin(x)cos(x)+9cos2(x)=25sin2(x)−(25−3sin2(x)−25cos2(x))+9cos2(x)=25sin2(x)−25+3sin2(x)+25cos2(x)+9cos2(x)=34sin2(x)+34cos2(x)−25=34(sin2(x)+cos2(x))−25=34−25=95sin(x)−3cos(x)=±9=±3 Answered by TonyCWX08 last updated on 05/Mar/24 36.x2+y2+z2=r2sin2(A)cos2(C)+r2sin2(A)sin2(C)+r2cos2(A)=r2(sin2(A)(sin2(C)+cos2(C))+cos2(A))=r2(sin2(A)+cos2(A))=r2(1)=r240.sin(x)+sin2(x)=1sin2(x)=1−sin(x)1−cos2(x)=1−sin(x)−cos2(x)=−sin(x)cos2(x)=sin(x)cos4(x)=sin2(x)cos2(x)+cos4(x)=sin(x)+sin2(x)=1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: if-y-x-1-7-prove-that-y-1-7-x-6-1-7-Next Next post: Question-205024 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.