Menu Close

For-what-value-of-k-can-be-expression-x-3-kx-2-7x-6-be-resolved-into-three-linear-factors-a-0-b-1-c-2-d-3-




Question Number 205018 by BaliramKumar last updated on 06/Mar/24
For what value of  ′k′ can be expression x^3  + kx^2  −7x +6              be resolved into three linear factors?  (a) 0           (b) 1             (c) 2              (d) 3
$$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\:'\mathrm{k}'\:\mathrm{can}\:\mathrm{be}\:\mathrm{expression}\:{x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{be}\:\mathrm{resolved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{factors}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{3} \\ $$
Commented by Rasheed.Sindhi last updated on 06/Mar/24
(a) k=0
$$\left(\mathrm{a}\right)\:\mathrm{k}=\mathrm{0} \\ $$
Commented by mr W last updated on 06/Mar/24
question is not clear. in complex  numbers with any real value of k  the expression can always be resolved  into three linear factors. in real  numbers the expression can be  resolved into three linear factors  if k_1 <k<k_2 .
$${question}\:{is}\:{not}\:{clear}.\:{in}\:{complex} \\ $$$${numbers}\:{with}\:{any}\:{real}\:{value}\:{of}\:{k} \\ $$$${the}\:{expression}\:{can}\:{always}\:{be}\:{resolved} \\ $$$${into}\:{three}\:{linear}\:{factors}.\:{in}\:{real} \\ $$$${numbers}\:{the}\:{expression}\:{can}\:{be} \\ $$$${resolved}\:{into}\:{three}\:{linear}\:{factors} \\ $$$${if}\:{k}_{\mathrm{1}} <{k}<{k}_{\mathrm{2}} . \\ $$
Answered by Rasheed.Sindhi last updated on 06/Mar/24
(a)k=0  x^3  + kx^2  −7x +6⇒x^3   −7x +6  x^3  −1 −7x +7  (x−1)(x^2 +x+1)−7(x−1)  (x−1)(x^2 +x−6)  (x−1)(x+3)(x−2)  For k=1,2,3 the expression has  no linear factor.
$$\left({a}\right){k}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\Rightarrow{x}^{\mathrm{3}} \:\:−\mathrm{7}{x}\:+\mathrm{6} \\ $$$${x}^{\mathrm{3}} \:−\mathrm{1}\:−\mathrm{7}{x}\:+\mathrm{7} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)−\mathrm{7}\left({x}−\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}−\mathrm{6}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left({x}+\mathrm{3}\right)\left({x}−\mathrm{2}\right) \\ $$$${For}\:{k}=\mathrm{1},\mathrm{2},\mathrm{3}\:{the}\:{expression}\:{has} \\ $$$${no}\:{linear}\:{factor}. \\ $$
Commented by mr W last updated on 06/Mar/24
linear factors (x+a)(x+b)(x+c)  don′t request that a, b, c should be  integer numbers. they may be real  numbers or even complex numbers.
$${linear}\:{factors}\:\left({x}+{a}\right)\left({x}+{b}\right)\left({x}+{c}\right) \\ $$$${don}'{t}\:{request}\:{that}\:{a},\:{b},\:{c}\:{should}\:{be} \\ $$$${integer}\:{numbers}.\:{they}\:{may}\:{be}\:{real} \\ $$$${numbers}\:{or}\:{even}\:{complex}\:{numbers}. \\ $$
Commented by Rasheed.Sindhi last updated on 06/Mar/24
Sir, I considered only numbers given  as options:  (a) k=0    (b) k=1  (c) k=2   (d) k=3
$$\boldsymbol{\mathrm{Sir}},\:\mathrm{I}\:\mathrm{considered}\:\mathrm{only}\:\mathrm{numbers}\:\mathrm{given} \\ $$$$\mathrm{as}\:\mathrm{options}: \\ $$$$\left(\mathrm{a}\right)\:{k}=\mathrm{0}\:\:\:\:\left(\mathrm{b}\right)\:{k}=\mathrm{1}\:\:\left(\mathrm{c}\right)\:{k}=\mathrm{2}\:\:\:\left(\mathrm{d}\right)\:{k}=\mathrm{3} \\ $$
Commented by mr W last updated on 06/Mar/24
yes. from these 4 given options only  k=0 is suitable.
$${yes}.\:{from}\:{these}\:\mathrm{4}\:{given}\:{options}\:{only} \\ $$$${k}=\mathrm{0}\:{is}\:{suitable}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *