Question Number 205018 by BaliramKumar last updated on 06/Mar/24
$$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\:'\mathrm{k}'\:\mathrm{can}\:\mathrm{be}\:\mathrm{expression}\:{x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{be}\:\mathrm{resolved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{factors}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{3} \\ $$
Commented by Rasheed.Sindhi last updated on 06/Mar/24
$$\left(\mathrm{a}\right)\:\mathrm{k}=\mathrm{0} \\ $$
Commented by mr W last updated on 06/Mar/24
$${question}\:{is}\:{not}\:{clear}.\:{in}\:{complex} \\ $$$${numbers}\:{with}\:{any}\:{real}\:{value}\:{of}\:{k} \\ $$$${the}\:{expression}\:{can}\:{always}\:{be}\:{resolved} \\ $$$${into}\:{three}\:{linear}\:{factors}.\:{in}\:{real} \\ $$$${numbers}\:{the}\:{expression}\:{can}\:{be} \\ $$$${resolved}\:{into}\:{three}\:{linear}\:{factors} \\ $$$${if}\:{k}_{\mathrm{1}} <{k}<{k}_{\mathrm{2}} . \\ $$
Answered by Rasheed.Sindhi last updated on 06/Mar/24
$$\left({a}\right){k}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\Rightarrow{x}^{\mathrm{3}} \:\:−\mathrm{7}{x}\:+\mathrm{6} \\ $$$${x}^{\mathrm{3}} \:−\mathrm{1}\:−\mathrm{7}{x}\:+\mathrm{7} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)−\mathrm{7}\left({x}−\mathrm{1}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}−\mathrm{6}\right) \\ $$$$\left({x}−\mathrm{1}\right)\left({x}+\mathrm{3}\right)\left({x}−\mathrm{2}\right) \\ $$$${For}\:{k}=\mathrm{1},\mathrm{2},\mathrm{3}\:{the}\:{expression}\:{has} \\ $$$${no}\:{linear}\:{factor}. \\ $$
Commented by mr W last updated on 06/Mar/24
$${linear}\:{factors}\:\left({x}+{a}\right)\left({x}+{b}\right)\left({x}+{c}\right) \\ $$$${don}'{t}\:{request}\:{that}\:{a},\:{b},\:{c}\:{should}\:{be} \\ $$$${integer}\:{numbers}.\:{they}\:{may}\:{be}\:{real} \\ $$$${numbers}\:{or}\:{even}\:{complex}\:{numbers}. \\ $$
Commented by Rasheed.Sindhi last updated on 06/Mar/24
$$\boldsymbol{\mathrm{Sir}},\:\mathrm{I}\:\mathrm{considered}\:\mathrm{only}\:\mathrm{numbers}\:\mathrm{given} \\ $$$$\mathrm{as}\:\mathrm{options}: \\ $$$$\left(\mathrm{a}\right)\:{k}=\mathrm{0}\:\:\:\:\left(\mathrm{b}\right)\:{k}=\mathrm{1}\:\:\left(\mathrm{c}\right)\:{k}=\mathrm{2}\:\:\:\left(\mathrm{d}\right)\:{k}=\mathrm{3} \\ $$
Commented by mr W last updated on 06/Mar/24
$${yes}.\:{from}\:{these}\:\mathrm{4}\:{given}\:{options}\:{only} \\ $$$${k}=\mathrm{0}\:{is}\:{suitable}. \\ $$