Menu Close

prove-lim-sup-A-n-c-lim-inf-A-n-c-




Question Number 205054 by SANOGO last updated on 06/Mar/24
prove  (lim sup(A_n ))^c = lim inf(A_n ^c )
prove(limsup(An))c=liminf(Anc)
Commented by aleks041103 last updated on 11/Mar/24
BUT  A_n =(1−(−1)^n )((n+1)/4)  A_n : 1,0,2,0,3,0,4,...  A_n = { ((0, 2∣n)),((k, n=2k−1≡1(mod 2))) :}    obv.   limsup A_n →+∞   if c=1(for example):  (limsup A_n )^c →+∞  liminf A_n ^c  = liminf A_n  = 0  ⇒(limsup A_n )^c  ≠ liminf A_n ^c  for c=1  ⇒ the statement is obviously false.    But if A_n  is convergent(or diverges to ±∞) then  limsup A_n = liminf A_n  = lim A_n = A  Since A_n  is convergent ⇒ A_n ^c  also converges  ⇒liminf A_n ^c =lim A_n ^c =A^c     ⇒liminf A_n ^c  = A^c  = (limsup A_n )^c
BUTAn=(1(1)n)n+14An:1,0,2,0,3,0,4,An={0,2nk,n=2k11(mod2)obv.limsupAn+ifc=1(forexample):(limsupAn)c+liminfAnc=liminfAn=0(limsupAn)climinfAncforc=1thestatementisobviouslyfalse.ButifAnisconvergent(ordivergesto±)thenlimsupAn=liminfAn=limAn=ASinceAnisconvergentAncalsoconvergesliminfAnc=limAnc=AcliminfAnc=Ac=(limsupAn)c

Leave a Reply

Your email address will not be published. Required fields are marked *