Question Number 205073 by mr W last updated on 07/Mar/24

Answered by cortano12 last updated on 07/Mar/24

Answered by Frix last updated on 07/Mar/24

Answered by A5T last updated on 07/Mar/24
![WLOG ,let a=x+yi,b=x−yi,c=c where x,y,c∈R ?=(1/(1−(x+yi)^2 ))+(1/(1−(x−yi)^2 ))+(1/(1−c^2 )) ⇒2?=(1/(1−x−yi))+(1/(1−x+yi))+(1/(1−c))+(1/(1+x+yi))+(1/(1+x−yi))+(1/(1+c)) =((2(1−x))/((1−x)^2 +y^2 ))+(1/(1−c))+((2(1+x))/((1+x)^2 +y^2 ))+(1/(1+c)) =((2(1−c−x+xc)+1+x^2 −2x+y^2 )/(1+x^2 −2x+y^2 −c−cx^2 +2cx−cy^2 ))+((2(1+x+c+cx)+1+x^2 +2x+y^2 )/(1+x^2 +2x+y^2 +c+cx^2 +2cx+cy^2 )) =((3−2(c+2x)+x^2 +y^2 +2cx)/(1+x^2 +y^2 +2cx−(2x+c)−c(x^2 +y^2 )))+((3+x^2 +y^2 +2cx+2(2x+c))/(1+x^2 +y^2 +2cx+2x+c+c(x^2 +y^2 ))) =((3−(2024))/(2025))+((3×2025)/(2025))=((4054)/(2025))=2? ⇒?=((2027)/(2025)) [ab+bc+ca=2024⇒x^2 +y^2 +2cx=2024 abc=(x^2 +y^2 )c=−2024;a+b+c=2x+c=2024]](https://www.tinkutara.com/question/Q205078.png)
Answered by A5T last updated on 07/Mar/24

Answered by mr W last updated on 07/Mar/24

Answered by pi314 last updated on 08/Mar/24
