Menu Close

given-that-there-are-real-constant-a-b-c-d-such-the-identity-x-2-2xy-y-2-ax-by-2-cx-dy-2-holds-for-all-x-y-R-this-implies-a-5-b-1-c-0-lt-lt-1-




Question Number 205101 by universe last updated on 08/Mar/24
  given that there are real constant a,b, c, d    such the identity   λx^2 +2xy+y^2 = (ax+by)^2 +(cx+dy)^2  holds   for all x,y ∈ R this implies  (a) λ=−5              (b) λ≥1             (c)0<λ<1   (d) there is no such λ∈R
$$\:\:\mathrm{given}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{real}\:\mathrm{constant}\:\mathrm{a},\mathrm{b},\:\mathrm{c},\:\mathrm{d} \\ $$$$\:\:\mathrm{such}\:\mathrm{the}\:\mathrm{identity} \\ $$$$\:\lambda\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} =\:\left(\mathrm{ax}+\mathrm{by}\right)^{\mathrm{2}} +\left(\mathrm{cx}+\mathrm{dy}\right)^{\mathrm{2}} \:\mathrm{holds} \\ $$$$\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\:\in\:\mathbb{R}\:\mathrm{this}\:\mathrm{implies} \\ $$$$\left({a}\right)\:\lambda=−\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\lambda\geqslant\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left({c}\right)\mathrm{0}<\lambda<\mathrm{1} \\ $$$$\:\left({d}\right)\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:\lambda\in\mathbb{R} \\ $$
Answered by A5T last updated on 08/Mar/24
λx^2 +2xy+y^2   =(a^2 +c^2 )x^2 +(2ab+2cd)xy+(b^2 +d^2 )y^2   ⇒b^2 +d^2 =1;ab+cd=1≤(√(a^2 +c^2 ))(√(b^2 +d^2 ))=(√(a^2 +c^2 ))  ⇒λ=a^2 +c^2 ≥1⇒(b)
$$\lambda{x}^{\mathrm{2}} +\mathrm{2}{xy}+{y}^{\mathrm{2}} \\ $$$$=\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){x}^{\mathrm{2}} +\left(\mathrm{2}{ab}+\mathrm{2}{cd}\right){xy}+\left({b}^{\mathrm{2}} +{d}^{\mathrm{2}} \right){y}^{\mathrm{2}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} +{d}^{\mathrm{2}} =\mathrm{1};{ab}+{cd}=\mathrm{1}\leqslant\sqrt{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }\sqrt{{b}^{\mathrm{2}} +{d}^{\mathrm{2}} }=\sqrt{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$\Rightarrow\lambda={a}^{\mathrm{2}} +{c}^{\mathrm{2}} \geqslant\mathrm{1}\Rightarrow\left({b}\right) \\ $$
Commented by universe last updated on 08/Mar/24
thank u so much sir
$${thank}\:{u}\:{so}\:{much}\:{sir}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *