Question Number 205092 by BaliramKumar last updated on 08/Mar/24
Answered by A5T last updated on 08/Mar/24
$${n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92}−{x}^{\mathrm{2}} =\mathrm{0} \\ $$$${n}=\frac{−\mathrm{19}\underset{−} {+}\sqrt{\mathrm{361}−\mathrm{4}\left(\mathrm{92}−{x}^{\mathrm{2}} \right)}}{\mathrm{2}}=\frac{−\mathrm{19}\underset{−} {+}\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{7}}}{\mathrm{2}} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{7}={p}^{\mathrm{2}} \Rightarrow\left(\mathrm{2}{x}−{p}\right)\left(\mathrm{2}{x}+{p}\right)=\mathrm{7}=\mathrm{1}×\mathrm{7}=−\mathrm{1}×−\mathrm{7} \\ $$$$\mathrm{2}{x}−{p}=\mathrm{1}\wedge\mathrm{2}{x}+{p}=\mathrm{7}\Rightarrow{x}=\mathrm{2} \\ $$$$\mathrm{2}{x}−{p}=−\mathrm{1}\wedge\mathrm{2}{x}+{p}=−\mathrm{7}\Rightarrow{x}=−\mathrm{2} \\ $$$${n}=\frac{−\mathrm{19}\underset{−} {+}\mathrm{3}}{\mathrm{2}}=−\mathrm{8}\:{or}\:−\mathrm{11}\Rightarrow{sum}=−\mathrm{19}\Rightarrow\left({d}\right) \\ $$
Commented by BaliramKumar last updated on 08/Mar/24
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Answered by A5T last updated on 08/Mar/24
$$\left({n}+\mathrm{9}\right)^{\mathrm{2}} <{n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92}<\left({n}+\mathrm{10}\right)^{\mathrm{2}} \\ $$$${when}\:{n}\geqslant\mathrm{0},\:{so}\:{n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92}\:{can}'{t}\:{be}\:{a}\:{perfect}\:{square} \\ $$$$\left({n}+\mathrm{10}\right)^{\mathrm{2}} ={n}^{\mathrm{2}} +\mathrm{20}{n}+\mathrm{100}={n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92}+{n}+\mathrm{8} \\ $$$${when}\:{n}=−\mathrm{8},\:{then}\:{n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92}=\left(−\mathrm{8}+\mathrm{10}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$${but}\:{when}\:{n}<−\mathrm{8},\:\left({n}+\mathrm{10}\right)^{\mathrm{2}} <{n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92} \\ $$$$\left({n}+\mathrm{9}\right)^{\mathrm{2}} ={n}^{\mathrm{2}} +\mathrm{18}{n}+\mathrm{81}={n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92}−{n}−\mathrm{11} \\ $$$${when}\:{n}=−\mathrm{11},{n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92}=\left(−\mathrm{11}+\mathrm{9}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$${but}\:{when}\:{n}<−\mathrm{11};\:\left({n}+\mathrm{9}\right)^{\mathrm{2}} >{n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92} \\ $$$$\Rightarrow{when}\:{n}<−\mathrm{11};\:\left({n}+\mathrm{10}\right)^{\mathrm{2}} <{n}^{\mathrm{2}} +\mathrm{19}{n}+\mathrm{92}<\left({n}+\mathrm{9}\right)^{\mathrm{2}} \\ $$$${Equality}\:{holds}\:{at}\:{either}\:−\mathrm{8}\:{or}\:−\mathrm{11} \\ $$$${So},{one}\:{can}\:{easily}\:{check}\:{n}=−\mathrm{10},−\mathrm{9},−\mathrm{7},−\mathrm{6},…−\mathrm{1} \\ $$$${to}\:{see}\:{that}\:{none}\:{satisfies}. \\ $$
Commented by BaliramKumar last updated on 08/Mar/24
$$\mathrm{difficult}\:\mathrm{method} \\ $$$$\boldsymbol{\mathrm{example}}\:\:\:\:\:\:\boldsymbol{\mathrm{n}}^{\mathrm{2}} \:+\:\mathrm{2}\boldsymbol{\mathrm{n}}\:+\:\mathrm{361}\:\:\:\:\:\:\:\:\mathrm{twelve}\:\mathrm{value}\:\mathrm{of}\:\:\:\boldsymbol{\mathrm{n}} \\ $$
Commented by A5T last updated on 08/Mar/24
$${This}\:{sort}\:{of}\:{method}\:{could}\:{be}\:{useful}\:{for}\:{questions} \\ $$$${like}\:{n}^{\mathrm{4}} +{n}^{\mathrm{3}} +{n}^{\mathrm{2}} +{n}+\mathrm{1}={x}^{\mathrm{2}} \left({Q}\mathrm{204397}\right)\:{where}\:{it}\: \\ $$$${would}\:{be}\:{difficult}\:{to}\:{make}\:{n}\:{the}\:{subject}\:{of}\: \\ $$$${formula}\:{in}\:{terms}\:{of}\:{x}. \\ $$$${So},{methods}\:{have}\:{their}\:{disadvantages}\:{and} \\ $$$${advantages}. \\ $$