Question Number 205151 by mathzup last updated on 10/Mar/24
$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$
Answered by Berbere last updated on 12/Mar/24
$$\Omega=\int_{−\infty} ^{\mathrm{0}} \frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}+\int_{\mathrm{0}} ^{\infty} \frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}=\int_{\mathrm{0}} ^{\infty} \frac{{ln}^{\mathrm{2}} \left({x}\right)+\left({ln}\left({x}\right)+{i}\pi\right)^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}−\pi^{\mathrm{2}} \int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }+\mathrm{2}{i}\pi\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{2}}\left({Re}\left(\Omega\right)+\pi^{\mathrm{2}} \int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }=\int_{\mathrm{0}} ^{\infty} \frac{{y}^{−\frac{\mathrm{3}}{\mathrm{4}}} }{\mathrm{4}\left(\mathrm{1}+{y}\right)}=\frac{\mathrm{1}}{\mathrm{4}}\beta\left(\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{3}}{\mathrm{4}}\right)=\frac{\pi}{\mathrm{4}{sin}\left(\frac{\pi}{\mathrm{4}}\right)}=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${C}=\left\{{z}\in\mathbb{C}\mid{Re}\left({z}\right)>\mathrm{0}\right\} \\ $$$$\int_{{C}} \frac{{ln}^{\mathrm{2}} \left({z}\right)}{\mathrm{1}+{z}^{\mathrm{4}} }{dx}=\mathrm{2}{i}\pi{Res}\left({f},{e}^{{i}\frac{\pi}{\mathrm{4}}} ,{e}^{\mathrm{3}{i}\frac{\pi}{\mathrm{4}}} \right)=\Omega \\ $$$$=\mathrm{2}{i}\pi.\left(\frac{\left(\frac{{i}\pi}{\mathrm{4}}\right)^{\mathrm{2}} }{\mathrm{4}{e}^{\mathrm{3}\frac{{i}\pi}{\mathrm{4}}} }+\frac{\left(\frac{\mathrm{3}{i}\pi}{\mathrm{4}}\right)^{\mathrm{2}} }{\mathrm{4}{e}^{\mathrm{9}{i}\frac{\pi}{\mathrm{4}}} }\right)={i}\frac{\pi}{\mathrm{2}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{16}}{e}^{{i}\frac{\pi}{\mathrm{4}}} −\frac{\mathrm{9}\pi^{\mathrm{2}} }{\mathrm{16}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right) \\ $$$$=\frac{\pi^{\mathrm{3}} }{\mathrm{32}}\left(−\mathrm{4}{i}\sqrt{\mathrm{2}}−\mathrm{5}\sqrt{\mathrm{2}}\right);\int_{\mathrm{0}} ^{\infty} \frac{{ln}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }=−\frac{\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{64}}\pi^{\mathrm{3}} +\frac{\pi^{\mathrm{3}} }{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{64}}\pi^{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$