Question Number 205142 by universe last updated on 10/Mar/24
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{n}^{−\mathrm{n}^{\mathrm{2}} } \left[\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\right)…\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}−\mathrm{1}} }\right)\right]^{\mathrm{n}} =? \\ $$
Answered by pi314 last updated on 10/Mar/24
$${e}^{\left.−{n}^{\mathrm{2}} {ln}\left({n}\right)\right){n}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{ln}\left({n}+\frac{\mathrm{1}}{\mathrm{2}^{{k}} }\right)} ={e}^{−{n}^{\mathrm{2}} {ln}\left({n}\right)+{n}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{ln}\left({n}\right)+{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{{k}} {n}}\right)} \\ $$$$={e}^{{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}\mathrm{2}^{{k}} }\right)} \\ $$$$\mathrm{0}\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x};\forall{x}\geqslant\mathrm{0} \\ $$$${ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}\mathrm{2}^{{k}} }\right)\leqslant\frac{\mathrm{1}}{{n}\mathrm{2}^{{k}} } \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{n}.\mathrm{2}^{{k}} }=\frac{\mathrm{1}}{{n}}\left(\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} }{\frac{\mathrm{1}}{\mathrm{2}}}\right)=\frac{\mathrm{2}^{{n}} −\mathrm{1}}{{n}.\mathrm{2}^{{n}−\mathrm{1}} }\rightarrow\mathrm{0} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}\mathrm{2}^{{k}} }\right)=\mathrm{0} \\ $$$${e}^{{ln}\left({n}^{−{n}^{\mathrm{2}} } \left[\left({n}+\mathrm{1}\right)….\left({n}+\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\right)\right]^{{n}} \right.} ={e}^{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}\mathrm{2}^{{k}} }\right)} \overset{\infty} {\rightarrow}{e}^{\mathrm{0}} =\mathrm{1} \\ $$