Menu Close

solve-for-z-C-zln-z-z-2-




Question Number 205147 by Ghisom last updated on 10/Mar/24
solve for z∈C  zln z =z−2
solveforzCzlnz=z2
Answered by pi314 last updated on 10/Mar/24
z=e^y   ⇔ye^y =e^y −2  (y−1)e^(y−1) =−2e^(−1)   y−1=W(−2e^(−1) )  y=1+W(−2e^(−1) )  z=e^(1+W(−2e^(−1) ))
z=eyyey=ey2(y1)ey1=2e1y1=W(2e1)y=1+W(2e1)z=e1+W(2e1)
Commented by Frix last updated on 10/Mar/24
What′s the approximate value of z?
Whatstheapproximatevalueofz?
Answered by Frix last updated on 10/Mar/24
Different method:  zln z −z+2=0  z(ln z −1)+2=0  z=re^(iθ)   re^(iθ) (ln r −1+iθ)+2=0   { ((r(cos θ ln r −cos θ −θsin θ)+2=0)),((ir(sin θ ln r +θcos θ −sin θ)=0)) :}  (2) ⇒ r=e^(1−(θ/(tan θ)))   (1) 2−e^(1−(θ/(tan θ))) (θ/(sin θ))=0  θ≈±1.13267249760  r≈1.59896034818  z≈.678344933205±1.44793727304i
Differentmethod:zlnzz+2=0z(lnz1)+2=0z=reiθreiθ(lnr1+iθ)+2=0{r(cosθlnrcosθθsinθ)+2=0ir(sinθlnr+θcosθsinθ)=0(2)r=e1θtanθ(1)2e1θtanθθsinθ=0θ±1.13267249760r1.59896034818z.678344933205±1.44793727304i

Leave a Reply

Your email address will not be published. Required fields are marked *