Question Number 205161 by York12 last updated on 11/Mar/24

Commented by York12 last updated on 11/Mar/24

Answered by mr W last updated on 12/Mar/24

Commented by mr W last updated on 13/Mar/24
![(−(1/a)+(1/b)+(1/r_n )+(1/r_(n+1) ))^2 =2((1/a^2 )+(1/b^2 )+(1/r_n ^2 )+(1/r_(n+1) ^2 )) (−(1/a)+(1/b))^2 +(1/r_n ^2 )+(1/r_(n+1) ^2 )+2(−(1/a)+(1/b))((1/r_n )+(1/r_(n+) ))+(2/(r_n r_(n+1) ))=2((1/a^2 )+(1/b^2 )+(1/r_n ^2 )+(1/r_(n+1) ^2 )) (1/r_(n+1) ^2 )−2((1/b)−(1/a)+(1/r_n ))(1/r_(n+1) )+(1/r_(n+1) ^2 )−2((1/b)−(1/a))(1/r_n )+((1/b)−(1/a))^2 +(4/(ab))=0 (1/r_(n+1) ^2 )−2((1/r_n )+(1/b)−(1/a))(1/r_(n+1) )+((1/r_n )−(1/b)+(1/a))^2 +(4/(ab))=0 ⇒(1/r_(n+1) )=(1/r_n )+(1/b)−(1/a)+2(√((1/r_n )((1/b)−(1/a))−(1/(ab)))) ⇒(1/r_(n−1) )=(1/r_n )+(1/b)−(1/a)−2(√((1/r_n )((1/b)−(1/a))−(1/(ab)))) ⇒(1/r_(n+1) )+(1/r_(n−1) )=2((1/r_n )+(1/b)−(1/a)) say k_n =(1/r_n ), α=(1/a), β=(1/b) ⇒k_(n+1) −2k_n +k_(n−1) +2(α−β)=0 k_n =A+Bn+(β−α)n^2 in current example: a=2, b=1, r_0 =a−b=1 k_0 =A=(1/r_0 )=(1/(a−b)) k_1 =A+B+(β−α) k_(−1) =A−B+(β−α)=k_1 ⇒B=0 ⇒k_n =(1/(a−b))+((1/b)−(1/a))n^2 =(((a−b)/(ab)))[((ab)/((a−b)^2 ))+n^2 ] r_n =((ab)/((a−b)[((ab)/((a−b)^2 ))+n^2 ]))=((ab)/((a−b)(λ^2 +n^2 ))) with λ=((√(ab))/(a−b)) S=πr_0 ^2 +2πΣ_(n=1) ^∞ r_n ^2 S=π(a−b)^2 +((2a^2 b^2 π)/((a−b)^2 ))Σ_(n=1) ^∞ (1/((λ^2 +n^2 )^2 )) we have (see Q205173) Σ_(n=1) ^∞ (1/((λ^2 +n^2 )^2 ))=(π^2 /(4λ^2 sinh^2 (λπ)))+(π/(4λ^3 tanh (λπ)))−(1/(2λ^4 )) S=π(a−b)^2 +((2a^2 b^2 π)/((a−b)^2 ))[(π^2 /(4λ^2 sinh^2 (λπ)))+(π/(4λ^3 tanh (λπ)))−(1/(2λ^4 ))] ⇒S=(((a−b)(√(ab))π^2 )/2)[((λπ)/(sinh^2 (λπ)))+(1/(tanh (λπ)))] with a=2, b=1, λ=(√2) S=(π^2 /( (√2)))[(((√2)π)/(sinh^2 ((√2)π)))+(1/(tanh ((√2)π)))] =((π^2 (e^((√2)π) +e^(−(√2)π) ))/( (√2)(e^((√2)π) −e^(−(√2)π) )))+((4π^3 )/(e^(2(√2)π) +e^(−2(√2)π) −2)) ≈6.997 958 338](https://www.tinkutara.com/question/Q205191.png)
Commented by mr W last updated on 12/Mar/24

Commented by York12 last updated on 12/Mar/24

Commented by York12 last updated on 12/Mar/24
