Menu Close

Calculate-the-area-of-the-green-shaded-portions-




Question Number 205161 by York12 last updated on 11/Mar/24
Calculate the area of the green shaded portions
Calculatetheareaofthegreenshadedportions
Commented by York12 last updated on 11/Mar/24
Answered by mr W last updated on 12/Mar/24
Commented by mr W last updated on 13/Mar/24
(−(1/a)+(1/b)+(1/r_n )+(1/r_(n+1) ))^2 =2((1/a^2 )+(1/b^2 )+(1/r_n ^2 )+(1/r_(n+1) ^2 ))  (−(1/a)+(1/b))^2 +(1/r_n ^2 )+(1/r_(n+1) ^2 )+2(−(1/a)+(1/b))((1/r_n )+(1/r_(n+) ))+(2/(r_n r_(n+1) ))=2((1/a^2 )+(1/b^2 )+(1/r_n ^2 )+(1/r_(n+1) ^2 ))  (1/r_(n+1) ^2 )−2((1/b)−(1/a)+(1/r_n ))(1/r_(n+1) )+(1/r_(n+1) ^2 )−2((1/b)−(1/a))(1/r_n )+((1/b)−(1/a))^2 +(4/(ab))=0  (1/r_(n+1) ^2 )−2((1/r_n )+(1/b)−(1/a))(1/r_(n+1) )+((1/r_n )−(1/b)+(1/a))^2 +(4/(ab))=0  ⇒(1/r_(n+1) )=(1/r_n )+(1/b)−(1/a)+2(√((1/r_n )((1/b)−(1/a))−(1/(ab))))  ⇒(1/r_(n−1) )=(1/r_n )+(1/b)−(1/a)−2(√((1/r_n )((1/b)−(1/a))−(1/(ab))))  ⇒(1/r_(n+1) )+(1/r_(n−1) )=2((1/r_n )+(1/b)−(1/a))  say k_n =(1/r_n ), α=(1/a), β=(1/b)  ⇒k_(n+1) −2k_n +k_(n−1) +2(α−β)=0  k_n =A+Bn+(β−α)n^2   in current example:  a=2, b=1, r_0 =a−b=1  k_0 =A=(1/r_0 )=(1/(a−b))  k_1 =A+B+(β−α)  k_(−1) =A−B+(β−α)=k_1   ⇒B=0  ⇒k_n =(1/(a−b))+((1/b)−(1/a))n^2 =(((a−b)/(ab)))[((ab)/((a−b)^2 ))+n^2 ]  r_n =((ab)/((a−b)[((ab)/((a−b)^2 ))+n^2 ]))=((ab)/((a−b)(λ^2 +n^2 )))  with λ=((√(ab))/(a−b))  S=πr_0 ^2 +2πΣ_(n=1) ^∞ r_n ^2   S=π(a−b)^2 +((2a^2 b^2 π)/((a−b)^2 ))Σ_(n=1) ^∞ (1/((λ^2 +n^2 )^2 ))  we have (see Q205173)  Σ_(n=1) ^∞ (1/((λ^2 +n^2 )^2 ))=(π^2 /(4λ^2  sinh^2  (λπ)))+(π/(4λ^3  tanh (λπ)))−(1/(2λ^4 ))  S=π(a−b)^2 +((2a^2 b^2 π)/((a−b)^2 ))[(π^2 /(4λ^2  sinh^2  (λπ)))+(π/(4λ^3  tanh (λπ)))−(1/(2λ^4 ))]  ⇒S=(((a−b)(√(ab))π^2 )/2)[((λπ)/(sinh^2  (λπ)))+(1/(tanh (λπ)))]  with a=2, b=1, λ=(√2)  S=(π^2 /( (√2)))[(((√2)π)/(sinh^2  ((√2)π)))+(1/(tanh ((√2)π)))]     =((π^2 (e^((√2)π) +e^(−(√2)π) ))/( (√2)(e^((√2)π) −e^(−(√2)π) )))+((4π^3 )/(e^(2(√2)π) +e^(−2(√2)π) −2))     ≈6.997 958 338
(1a+1b+1rn+1rn+1)2=2(1a2+1b2+1rn2+1rn+12)(1a+1b)2+1rn2+1rn+12+2(1a+1b)(1rn+1rn+)+2rnrn+1=2(1a2+1b2+1rn2+1rn+12)1rn+122(1b1a+1rn)1rn+1+1rn+122(1b1a)1rn+(1b1a)2+4ab=01rn+122(1rn+1b1a)1rn+1+(1rn1b+1a)2+4ab=01rn+1=1rn+1b1a+21rn(1b1a)1ab1rn1=1rn+1b1a21rn(1b1a)1ab1rn+1+1rn1=2(1rn+1b1a)saykn=1rn,α=1a,β=1bkn+12kn+kn1+2(αβ)=0kn=A+Bn+(βα)n2incurrentexample:a=2,b=1,r0=ab=1k0=A=1r0=1abk1=A+B+(βα)k1=AB+(βα)=k1B=0kn=1ab+(1b1a)n2=(abab)[ab(ab)2+n2]rn=ab(ab)[ab(ab)2+n2]=ab(ab)(λ2+n2)withλ=ababS=πr02+2πn=1rn2S=π(ab)2+2a2b2π(ab)2n=11(λ2+n2)2wehave(seeQ205173)n=11(λ2+n2)2=π24λ2sinh2(λπ)+π4λ3tanh(λπ)12λ4S=π(ab)2+2a2b2π(ab)2[π24λ2sinh2(λπ)+π4λ3tanh(λπ)12λ4]S=(ab)abπ22[λπsinh2(λπ)+1tanh(λπ)]witha=2,b=1,λ=2S=π22[2πsinh2(2π)+1tanh(2π)]=π2(e2π+e2π)2(e2πe2π)+4π3e22π+e22π26.997958338
Commented by mr W last updated on 12/Mar/24
Commented by York12 last updated on 12/Mar/24
thank you
thankyou
Commented by York12 last updated on 12/Mar/24
very good solution
verygoodsolution

Leave a Reply

Your email address will not be published. Required fields are marked *