Menu Close

Find-the-determinant-determinant-1-x-2-3-n-1-2-x-3-n-1-2-3-x-n-1-2-3-n-x-




Question Number 205164 by depressiveshrek last updated on 11/Mar/24
Find the determinant:   determinant (((1−x),2,3,…,n),(1,(2−x),3,…,n),(1,2,(3−x),…,n),(⋮,⋮,⋮,⋱,⋮),(1,2,3,…,(n−x)))
Findthedeterminant:|1x23n12x3n123xn123nx|
Answered by aleks041103 last updated on 12/Mar/24
By subtracting the first row from all other   determinant (((1−x),2,3,…,n),(1,(2−x),3,…,n),(1,2,(3−x),…,n),(⋮,⋮,⋮,⋱,⋮),(1,2,3,…,(n−x)))=  = determinant (((1−x),2,3,…,n),(x,(−x),0,…,0),(x,0,(−x),…,0),(⋮,⋮,⋮,⋱,⋮),(x,0,0,…,(−x)))   determinant ((a_0 ,b_1 ,b_2 ,…,b_n ),(c_1 ,a_1 ,0,…,0),(c_2 ,0,a_2 ,…,0),(⋮,⋮,⋮,⋱,⋮),(c_n ,0,0,…,a_n ))=  =a_0 a_1 ...a_n −c_1 b_1 a_2 ...a_n −c_2 b_2 a_1 a_3 ...a_n −...=  =a_0 a_1 ...a_n −Σ_(k=1) ^n b_k c_k Π_(s≠k) a_s   ⇒ determinant (((1−x),2,3,…,n),(x,(−x),0,…,0),(x,0,(−x),…,0),(⋮,⋮,⋮,⋱,⋮),(x,0,0,…,(−x)))=  =(1−x)(−x)^(n−1) −Σ_(k=1) ^(n−1) (k+1)x(−x)^(n−2) =  =(1−x+Σ_(k=2) ^n k)(−1)^(n−1) x^(n−1) =  =(−1)^n (x−((n(n+1))/2))x^(n−1)
Bysubtractingthefirstrowfromallother|1x23n12x3n123xn123nx|==|1x23nxx00x0x0x00x||a0b1b2bnc1a100c20a20cn00an|==a0a1anc1b1a2anc2b2a1a3an==a0a1annk=1bkckskas|1x23nxx00x0x0x00x|==(1x)(x)n1n1k=1(k+1)x(x)n2==(1x+nk=2k)(1)n1xn1==(1)n(xn(n+1)2)xn1

Leave a Reply

Your email address will not be published. Required fields are marked *