Menu Close

1-x-x-3-lnx-dx-




Question Number 205200 by mathlove last updated on 12/Mar/24
∫_1 ^∞  (x/(x^3 +lnx)) dx=?
$$\int_{\mathrm{1}} ^{\infty} \:\frac{{x}}{{x}^{\mathrm{3}} +{lnx}}\:{dx}=? \\ $$
Answered by mathzup last updated on 12/Mar/24
changement lnx=t give  I=∫_0 ^∞   (e^t /(e^(3t) +t)) e^t dt =∫_0 ^∞  (e^(2t) /(e^(3t) +t))dt  =∫_0 ^∞ (e^(−t) /(1+te^(−3t) ))dt=∫_0 ^∞ e^(−t) Σ_(n=0) ^∞ (−1)^n t^n e^(−3nt) dt  =Σ_(n=0) ^∞ (−1)^n ∫_0 ^∞  t^n  e^(−(3n+1)t) dt  =Σ_(n=0) ^∞ (−1)^n A_n   A_n =_((3n+1)t=z)   ∫_0 ^∞ ((z/(3n+1)))^n e^(−z) (dz/((3n+1)))  =(1/((3n+1)^n ))∫_0 ^∞  z^n e^(−z) dz  =((Γ(n+1))/((3n+1)^n ))=((n!)/((3n+1)^n )) ⇒  I=Σ_(n=0) ^∞  (−1)^n ((n!)/((3n+1)^n ))  if you want a aproximate value go  to n=10 in this serie...
$${changement}\:{lnx}={t}\:{give} \\ $$$${I}=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{t}} }{{e}^{\mathrm{3}{t}} +{t}}\:{e}^{{t}} {dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{\mathrm{2}{t}} }{{e}^{\mathrm{3}{t}} +{t}}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{\mathrm{1}+{te}^{−\mathrm{3}{t}} }{dt}=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} \sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {t}^{{n}} {e}^{−\mathrm{3}{nt}} {dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\infty} \:{t}^{{n}} \:{e}^{−\left(\mathrm{3}{n}+\mathrm{1}\right){t}} {dt} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {A}_{{n}} \\ $$$${A}_{{n}} =_{\left(\mathrm{3}{n}+\mathrm{1}\right){t}={z}} \:\:\int_{\mathrm{0}} ^{\infty} \left(\frac{{z}}{\mathrm{3}{n}+\mathrm{1}}\right)^{{n}} {e}^{−{z}} \frac{{dz}}{\left(\mathrm{3}{n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)^{{n}} }\int_{\mathrm{0}} ^{\infty} \:{z}^{{n}} {e}^{−{z}} {dz} \\ $$$$=\frac{\Gamma\left({n}+\mathrm{1}\right)}{\left(\mathrm{3}{n}+\mathrm{1}\right)^{{n}} }=\frac{{n}!}{\left(\mathrm{3}{n}+\mathrm{1}\right)^{{n}} }\:\Rightarrow \\ $$$${I}=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \frac{{n}!}{\left(\mathrm{3}{n}+\mathrm{1}\right)^{{n}} } \\ $$$${if}\:{you}\:{want}\:{a}\:{aproximate}\:{value}\:{go} \\ $$$${to}\:{n}=\mathrm{10}\:{in}\:{this}\:{serie}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *