Menu Close

lim-x-x-1-x-where-is-a-fractional-part-of-x-




Question Number 205174 by universe last updated on 12/Mar/24
lim_(x→∞)  {x^(1/x) } = ? where {.} is a fractional part of x
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{{x}^{\mathrm{1}/{x}} \right\}\:=\:?\:{where}\:\left\{.\right\}\:{is}\:{a}\:{fractional}\:{part}\:{of}\:{x} \\ $$
Answered by lepuissantcedricjunior last updated on 12/Mar/24
lim_(x→+∞) (x)^(1/x) =∞^0 =FI  lim_(x→+∞) (x)^(1/x) =lim_(x→+∞) e^((lnx)/x) =e^0 =1  car lim_(x→+∞) ((lnx)/x)=0  formule usuelle  .........le puissant Dr............
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\boldsymbol{{x}}\right)^{\frac{\mathrm{1}}{\boldsymbol{{x}}}} =\infty^{\mathrm{0}} =\boldsymbol{\mathrm{F}{I}} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\boldsymbol{{x}}\right)^{\frac{\mathrm{1}}{\boldsymbol{{x}}}} =\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\boldsymbol{{e}}^{\frac{\boldsymbol{{lnx}}}{\boldsymbol{{x}}}} =\boldsymbol{{e}}^{\mathrm{0}} =\mathrm{1} \\ $$$$\boldsymbol{{car}}\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\boldsymbol{{lnx}}}{\boldsymbol{{x}}}=\mathrm{0}\:\:\boldsymbol{{formule}}\:\boldsymbol{{usuelle}} \\ $$$$………{le}\:{puissant}\:\boldsymbol{{D}}{r}………… \\ $$
Answered by Berbere last updated on 13/Mar/24
=x^(1/x) −[x^(1/x) ]  x→^f x^(1/x) ;  f(x)=e^((1/x)ln(x)) ;lim_(x→∞) f(x)=1  x>1⇒f(x)≥1 ⇒∃A∈R,∀x≥A⇒1≤f(x)≤(3/2)  ⇒∀x≥A  [e^((ln(x))/x) ]=1  ⇒x^(1/x) −[x^(1/x) ]=x^(1/x) −1;∀x≥A  lim_(x→∞)  x^(1/x) −1=0
$$={x}^{\frac{\mathrm{1}}{{x}}} −\left[{x}^{\frac{\mathrm{1}}{{x}}} \right] \\ $$$${x}\overset{{f}} {\rightarrow}{x}^{\frac{\mathrm{1}}{{x}}} ; \\ $$$${f}\left({x}\right)={e}^{\frac{\mathrm{1}}{{x}}{ln}\left({x}\right)} ;\underset{{x}\rightarrow\infty} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1} \\ $$$${x}>\mathrm{1}\Rightarrow{f}\left({x}\right)\geqslant\mathrm{1}\:\Rightarrow\exists{A}\in\mathbb{R},\forall{x}\geqslant{A}\Rightarrow\mathrm{1}\leqslant{f}\left({x}\right)\leqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\forall{x}\geqslant{A}\:\:\left[{e}^{\frac{{ln}\left({x}\right)}{{x}}} \right]=\mathrm{1} \\ $$$$\Rightarrow{x}^{\frac{\mathrm{1}}{{x}}} −\left[{x}^{\frac{\mathrm{1}}{{x}}} \right]={x}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1};\forall{x}\geqslant{A} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *