Question Number 205175 by BaliramKumar last updated on 12/Mar/24
Answered by Rasheed.Sindhi last updated on 12/Mar/24
$$\mathrm{413283P759387} \\ $$$$\bullet{Divide}\:{the}\:{number}\:{in}\:{groups}\:{of}\:\mathrm{3} \\ $$$${from}\:{right}\:{side} \\ $$$$\mathrm{4},\mathrm{132},\mathrm{83P},\mathrm{759},\mathrm{387} \\ $$$$\bullet{Apply}\:{subtraction}\:{and}\:{addition} \\ $$$${alternatively}\:{between}\:{the}\:{groups}: \\ $$$$\mathrm{387}−\mathrm{759}+\mathrm{83P}−\mathrm{132}+\mathrm{4} \\ $$$${The}\:{number}\:{is}\:{divisible}\:{by}\:\mathrm{13}\:{if} \\ $$$${the}\:{result}\:{is}\:\mathrm{0}\:{or}\:{a}\:{multiple}\:{of}\:\mathrm{13} \\ $$$$\because\:\mathrm{13}\:\mid\:\left(\mathrm{387}−\mathrm{759}+\mathrm{83P}−\mathrm{132}+\mathrm{4}\right) \\ $$$$\:\:\:{or}\mathrm{13}\:\mid\:\left(\mathrm{387}−\mathrm{759}+\left(\mathrm{830}+\mathrm{P}\right)−\mathrm{132}+\mathrm{4}\right) \\ $$$$\:\:\:{or}\:\mathrm{13}\:\mid\:\mathrm{330}+\mathrm{P} \\ $$$$\:\:\:{or}\:\mathrm{13}\:\mid\:\mathrm{13}×\mathrm{25}+\mathrm{5}+\mathrm{P} \\ $$$$\:\:\:{or}\:\mathrm{13}\:\mid\:\mathrm{5}+\mathrm{P} \\ $$$${Recall}\:{that}\:\mathrm{0}\leqslant\mathrm{P}\leqslant\mathrm{9}\:{also}. \\ $$$$\therefore\:\mathrm{P}=\mathrm{8} \\ $$
Commented by BaliramKumar last updated on 12/Mar/24
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Answered by A5T last updated on 12/Mar/24
$$\left[\mathrm{3}^{\mathrm{3}{k}+\mathrm{1}} \overset{\mathrm{13}} {\equiv}\mathrm{3};\mathrm{3}^{\mathrm{3}{k}+\mathrm{2}} \overset{\mathrm{13}} {\equiv};\mathrm{3}^{\mathrm{3}{k}} \overset{\mathrm{13}} {\equiv}\mathrm{1}\right] \\ $$$$\mathrm{4}\left(\mathrm{10}^{\mathrm{12}} \right)+\mathrm{1}\left(\mathrm{10}^{\mathrm{11}} \right)+\mathrm{3}\left(\mathrm{10}^{\mathrm{10}} \right)+…+\mathrm{3}\left(\mathrm{10}^{\mathrm{2}} \right)+\mathrm{8}\left(\mathrm{10}\right)+\mathrm{7} \\ $$$$\overset{\mathrm{13}} {\equiv}\mathrm{4}\left(−\mathrm{3}\right)^{\mathrm{12}} +\left(−\mathrm{3}\right)^{\mathrm{11}} +\mathrm{3}\left(−\mathrm{3}\right)^{\mathrm{10}} +…+\mathrm{3}\left(−\mathrm{3}\right)^{\mathrm{2}} +\mathrm{8}\left(−\mathrm{3}\right)+\mathrm{7} \\ $$$$\equiv\mathrm{4}\left(\mathrm{1}\right)+\mathrm{1}\left(−\mathrm{9}\right)+\mathrm{3}\left(\mathrm{3}\right)+\mathrm{2}\left(−\mathrm{1}\right)+\mathrm{8}\left(\mathrm{9}\right)+\mathrm{3}\left(−\mathrm{3}\right)+{P} \\ $$$$+\mathrm{7}\left(−\mathrm{9}\right)+\mathrm{5}\left(\mathrm{3}\right)+\mathrm{9}\left(−\mathrm{1}\right)+\mathrm{3}\left(\mathrm{9}\right)+\mathrm{8}\left(−\mathrm{3}\right)+\mathrm{7}={P}+\mathrm{18} \\ $$$$\overset{\mathrm{13}} {\equiv}\mathrm{0}\Rightarrow{P}\equiv−\mathrm{18}\equiv−\mathrm{5}\equiv\mathrm{8}\left({mod}\:\mathrm{13}\right)\Rightarrow{P}=\mathrm{8}\: \\ $$
Commented by BaliramKumar last updated on 12/Mar/24
$$\mathrm{thanks}\:\mathrm{sir} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{osculator}\:\mathrm{how}\:\mathrm{it}\:\mathrm{works} \\ $$$$ \\ $$
Commented by A5T last updated on 12/Mar/24
$${If}\:{you}\:{want}\:{to}\:{find}\:{the}\:{osculator}\:{of}\:{a}\:{number} \\ $$$${that}\:{is}\:{co}-{prime}\:{with}\:\mathrm{10},{say}\:\mathrm{17}\:{or}\:\mathrm{19},\:{find}\:{the} \\ $$$${smallest}\:{multiple}\:{of}\:{the}\:{number},\:{say}\:\mathrm{17}:\left(\mathrm{51}\right) \\ $$$${or}\:\mathrm{19}:\left(\mathrm{19}\right),\:{that}\:{is}\:\underset{−} {+}\mathrm{1}\:{mod}\:\mathrm{10}.\: \\ $$$${If}\:{the}\:{smallest}\:{multiple}\:{that}\:{is}\:\underset{−} {+}\mathrm{1}{mod}\:\mathrm{10}\:{is}\: \\ $$$${actually}\:+\mathrm{1}\left({mod}\:\mathrm{10}\right)\:{as}\:{in}\:{the}\:{case}\:{of}\:\mathrm{17},\:{the}\:{first}\: \\ $$$${digit}\:{of}\:{that}\:{multiple}\:{is}\:{called}\:{the}\:“{negative}''\: \\ $$$${osculator}\:{of}\:{the}\:{number}. \\ $$$${So},\:{if}\:{you}\:{want}\:{to}\:{check}\:{the}\:{divisibility}\:{of}\:{a}\:{number} \\ $$$${by}\:\mathrm{17},{say}\:\mathrm{3281},\:{then}\:{you}\:“{subtract}\:\mathrm{5}\:{times}''\:{the}\: \\ $$$${last}\:{digit},\mathrm{1},\:{from}\:{the}\:{remaining}\:{part}:\:\mathrm{328}−\mathrm{5}×\mathrm{1} \\ $$$$=\mathrm{323}\overset{\underset{{operation}} {{same}}} {\rightarrow}\mathrm{32}−\mathrm{3}×\mathrm{5}=\mathrm{17}.\:{Since}\:\mathrm{17}\:{is}\:{divisible}\:{by}\:\mathrm{17}, \\ $$$$\mathrm{3281}\:{must}\:{also}\:{be}\:{divisible}\:{by}\:\mathrm{17}. \\ $$$$ \\ $$$${For}\:{a}\:{number}\:{like}\:\mathrm{19}\equiv−\mathrm{1}\left({mod}\:\mathrm{10}\right);\:{the}\:“{positive}'' \\ $$$${osculator}\:{is}\:{the}\:{first}\:{digit}\:{of}\:\mathrm{19}+\mathrm{1},{which}\:{is}\:\mathrm{2}, \\ $$$${so}\:{instead}\:{of}\:“{subtracting}''\:{the}\:{last}\:{digit},\:{you} \\ $$$${add}\:{it}.\:{For}\:{example},\mathrm{3876}:\:\mathrm{387}+\mathrm{6}×\mathrm{2}=\mathrm{399} \\ $$$$\rightarrow\mathrm{39}+\mathrm{9}×\mathrm{2}=\mathrm{57}=\mathrm{19}×\mathrm{3}\left({divisible}\:{by}\:\mathrm{19}\right)\Rightarrow\mathrm{19}\mid\mathrm{3876} \\ $$
Commented by A5T last updated on 12/Mar/24
$${The}\:{negative}\:{osculator}\:{of}\:\mathrm{7}\:{is}\:\mathrm{2} \\ $$$${First}\:{multiples}\:{of}\:\mathrm{7}:\:\mathrm{7},\mathrm{14},\mathrm{21}:\:+\mathrm{1}\left({mod}\:\mathrm{10}\right) \\ $$$${So},{osculator}\:{is}\:{first}\:{digit}\:{of}\:\mathrm{21}−\mathrm{1} \\ $$$${The}\:{positive}\:{osculator}\:{of}\:\mathrm{13}\:{is}\:\mathrm{4} \\ $$$${First}\:{multiples}\:{of}\:\mathrm{13}:\:\mathrm{13},\mathrm{26},\mathrm{39}:\:−\mathrm{1}\left({mod}\:\mathrm{10}\right) \\ $$$${So},{osculator}\:{is}\:{first}\:{digit}\:{of}\:\mathrm{39}+\mathrm{1} \\ $$
Commented by BaliramKumar last updated on 12/Mar/24
$$\mathrm{thanks}\:\mathrm{sir} \\ $$
Answered by A5T last updated on 12/Mar/24
$$\left[\mathrm{10}^{\mathrm{3}} \overset{\mathrm{13}} {\equiv}−\mathrm{1};\mathrm{10}^{\mathrm{6}} \overset{\mathrm{13}} {\equiv}\mathrm{1}\right] \\ $$$$\mathrm{413283}{P}\mathrm{759387}=\mathrm{387}+\mathrm{759}×\mathrm{1000}+\mathrm{83}{P}×\mathrm{10}^{\mathrm{6}} \\ $$$$+\mathrm{132}×\mathrm{10}^{\mathrm{9}} +\mathrm{4}×\mathrm{10}^{\mathrm{12}} \equiv\mathrm{387}−\mathrm{759}+\mathrm{83}{P}−\mathrm{132}+\mathrm{4} \\ $$$$\overset{\mathrm{13}} {\equiv}\mathrm{0}\Rightarrow\mathrm{83}{P}−\mathrm{500}\overset{\mathrm{13}} {\equiv}\mathrm{0}\Rightarrow\mathrm{830}+{P}\equiv\mathrm{500}\equiv\mathrm{6}\left({mod}\:\mathrm{13}\right) \\ $$$$\mathrm{11}+{P}\overset{\mathrm{13}} {\equiv}\mathrm{6}\Rightarrow{P}\equiv−\mathrm{5}\overset{\mathrm{13}} {\equiv}\mathrm{8} \\ $$
Answered by Rasheed.Sindhi last updated on 13/Mar/24
$$\mathrm{413283P759387} \\ $$$$=\mathrm{4132830000000}+\mathrm{P759387} \\ $$$${Osculator}\:{of}\:\mathrm{13}=\mathrm{4} \\ $$$$\mathrm{P759387} \\ $$$$\begin{array}{|c|c|c|}{\mathrm{P}}&\hline{\mathrm{7}}&\hline{\mathrm{5}}&\hline{\mathrm{9}}&\hline{\mathrm{3}}&\hline{\mathrm{8}}&\hline{\mathrm{7}}\\{\mathrm{4}×\mathrm{4}+\mathrm{2}+\mathrm{P}}&\hline{\mathrm{4}×\mathrm{4}+\mathrm{1}+\mathrm{7}}&\hline{\mathrm{4}×\mathrm{2}+\mathrm{1}+\mathrm{5}}&\hline{\mathrm{4}×\mathrm{0}+\mathrm{3}+\mathrm{9}}&\hline{\mathrm{4}×\mathrm{6}+\mathrm{3}+\mathrm{3}}&\hline{\mathrm{4}×\mathrm{7}+\mathrm{8}}&\hline{\:}\\{\mathrm{18}+\mathrm{P}}&\hline{\mathrm{24}}&\hline{\mathrm{14}}&\hline{\mathrm{12}}&\hline{\mathrm{30}}&\hline{\mathrm{36}}&\hline{\:}\\\hline\end{array} \\ $$$$\mathrm{4132830000000} \\ $$$$\begin{array}{|c|c|c|}{\mathrm{4}}&\hline{\mathrm{1}}&\hline{\mathrm{3}}&\hline{\mathrm{2}}&\hline{\mathrm{8}}&\hline{\mathrm{3}}&\hline{\mathrm{0}}&\hline{…}&\hline{\mathrm{0}}\\{\mathrm{4}×\mathrm{8}+\mathrm{3}+\mathrm{4}}&\hline{\mathrm{4}×\mathrm{9}+\mathrm{1}+\mathrm{1}}&\hline{\mathrm{4}×\mathrm{4}+\mathrm{3}}&\hline{\mathrm{4}×\mathrm{0}+\mathrm{2}+\mathrm{2}}&\hline{\mathrm{4}×\mathrm{3}+\mathrm{8}}&\hline{\mathrm{4}×\mathrm{0}+\mathrm{3}}&\hline{\mathrm{4}×\mathrm{0}+\mathrm{0}}&\hline{\:}&\hline{\:}\\{\mathrm{39}}&\hline{\mathrm{38}}&\hline{\mathrm{19}}&\hline{\mathrm{4}}&\hline{\mathrm{20}}&\hline{\mathrm{3}}&\hline{\mathrm{0}}&\hline{\:}&\hline{\:}\\\hline\end{array} \\ $$$$\: \\ $$$$\mathrm{13}\mid\left(\mathrm{18}+\mathrm{P}+\mathrm{39}\right) \\ $$$$\mathrm{13}\mid\left(\mathrm{5}+\mathrm{P}\right) \\ $$$$\mathrm{P}=\mathrm{8} \\ $$