Menu Close

0-pi-x-2-cos-2-x-xsin-x-cos-x-1-1-xsin-x-2-dx-




Question Number 205248 by universe last updated on 13/Mar/24
   ∫_0 ^π  ((x^2 cos^2 (x)−xsin(x)−cos(x)−1)/((1+xsin(x))^2 ))dx
0πx2cos2(x)xsin(x)cos(x)1(1+xsin(x))2dx
Answered by Berbere last updated on 13/Mar/24
(((f(x))/(1+xsin(x)))+g(x))^′ =((x^2 cos^2 (x)−xsin(x)−cos(x)−1)/((1+xsin(x))^2 ))  ((f′(1+xsin(x))−(sin(x)+xcos(x))f)/((1+xsin(x))^2 ))+g′(x)=((x^2 cos^2 (x)−xsin(x)−cos(x)−1)/((1+xsin(x))^2 ))  f=−xcos(x)  ⇒(−cos(x)+xsin(x))(1+xsin(x))−(sin(x)+xcos(x))(−xcos(x)  x^2 cos^2 (x)+x^2 sin^2 (x)+xsin(x)−cos(x)=f′(1+xsin(x))−(sin(x)+xcos(x))f  ⇒((f′(1+xsin(x))−(sin(x)+xcos(x))f)/((1+xsin(x))^2 ))+g′  =((x^2 cos^2 (x)−cos(x)−xsin(x)−1+2xsin(x)+x^2 sin^2 (x)+1)/((1+xsin(x))^2 ))  =(d/dx)(((−xcos(x))/((1+xsin(x)))))+(((1+xsin(x))^2 )/((1+xsin(x))^2 ))  ∫_0 ^π ((x^2 cos^2 (x)−xsin(x)−cos(x)−1)/((1+xsin(x))^2 ))dx=∫_0 ^π (((−xcos(x))/((1+xsin(x))))^′ −1dx    =[−((xcos(x))/(1+xsin(x)))−x]_0 ^π =π−π=0
(f(x)1+xsin(x)+g(x))=x2cos2(x)xsin(x)cos(x)1(1+xsin(x))2f(1+xsin(x))(sin(x)+xcos(x))f(1+xsin(x))2+g(x)=x2cos2(x)xsin(x)cos(x)1(1+xsin(x))2f=xcos(x)(cos(x)+xsin(x))(1+xsin(x))(sin(x)+xcos(x))(xcos(x)x2cos2(x)+x2sin2(x)+xsin(x)cos(x)=f(1+xsin(x))(sin(x)+xcos(x))ff(1+xsin(x))(sin(x)+xcos(x))f(1+xsin(x))2+g=x2cos2(x)cos(x)xsin(x)1+2xsin(x)+x2sin2(x)+1(1+xsin(x))2=ddx(xcos(x)(1+xsin(x)))+(1+xsin(x))2(1+xsin(x))2Missing \left or extra \right=[xcos(x)1+xsin(x)x]0π=ππ=0
Commented by universe last updated on 14/Mar/24
thank u sir
thankusir

Leave a Reply

Your email address will not be published. Required fields are marked *