Menu Close

4-x-x-260-find-the-possible-values-of-x-




Question Number 205238 by necx122 last updated on 13/Mar/24
4^x  + x = 260  find the possible values of x
$$\mathrm{4}^{{x}} \:+\:{x}\:=\:\mathrm{260} \\ $$$${find}\:{the}\:{possible}\:{values}\:{of}\:{x} \\ $$$$ \\ $$
Commented by Ghisom last updated on 13/Mar/24
generally  b^x =ax+c  let x=−(t/(ln b))−(c/a)  e^t t=−((ln b)/(b^(c/a) a))  t=W (−((ln b)/(b^(c/a) a)))  x=−(c/a)−(1/(ln b))W (−((ln b)/(b^(c/a) a)))
$$\mathrm{generally} \\ $$$${b}^{{x}} ={ax}+{c} \\ $$$$\mathrm{let}\:{x}=−\frac{{t}}{\mathrm{ln}\:{b}}−\frac{{c}}{{a}} \\ $$$$\mathrm{e}^{{t}} {t}=−\frac{\mathrm{ln}\:{b}}{{b}^{{c}/{a}} {a}} \\ $$$${t}={W}\:\left(−\frac{\mathrm{ln}\:{b}}{{b}^{{c}/{a}} {a}}\right) \\ $$$${x}=−\frac{{c}}{{a}}−\frac{\mathrm{1}}{\mathrm{ln}\:{b}}{W}\:\left(−\frac{\mathrm{ln}\:{b}}{{b}^{{c}/{a}} {a}}\right) \\ $$
Answered by A5T last updated on 13/Mar/24
4^4 =2^8 =256=260−4⇒x=4   when x>4, 4^x +x>256+4=260  when x<4, 4^x +x<260⇒x=4
$$\mathrm{4}^{\mathrm{4}} =\mathrm{2}^{\mathrm{8}} =\mathrm{256}=\mathrm{260}−\mathrm{4}\Rightarrow{x}=\mathrm{4}\: \\ $$$${when}\:{x}>\mathrm{4},\:\mathrm{4}^{{x}} +{x}>\mathrm{256}+\mathrm{4}=\mathrm{260} \\ $$$${when}\:{x}<\mathrm{4},\:\mathrm{4}^{{x}} +{x}<\mathrm{260}\Rightarrow{x}=\mathrm{4}\: \\ $$
Commented by necx122 last updated on 13/Mar/24
can it be solved analytically? I know of Lambert W function but I don't know how to apply it here.
Answered by mr W last updated on 13/Mar/24
4^x =260−x  4^(x−260) ×4^(260) =260−x  (260−x)4^(260−x) =4^(260)   (260−x)e^((260−x)ln 4) =4^(260)   (260−x)ln 4e^((260−x)ln 4) =4^(260) ×ln 4  ⇒(260−x)ln 4=W(4^(260) ×ln 4)  ⇒x=260−((W(4^(260) ×ln 4))/(ln 4))=4
$$\mathrm{4}^{{x}} =\mathrm{260}−{x} \\ $$$$\mathrm{4}^{{x}−\mathrm{260}} ×\mathrm{4}^{\mathrm{260}} =\mathrm{260}−{x} \\ $$$$\left(\mathrm{260}−{x}\right)\mathrm{4}^{\mathrm{260}−{x}} =\mathrm{4}^{\mathrm{260}} \\ $$$$\left(\mathrm{260}−{x}\right){e}^{\left(\mathrm{260}−{x}\right)\mathrm{ln}\:\mathrm{4}} =\mathrm{4}^{\mathrm{260}} \\ $$$$\left(\mathrm{260}−{x}\right)\mathrm{ln}\:\mathrm{4}{e}^{\left(\mathrm{260}−{x}\right)\mathrm{ln}\:\mathrm{4}} =\mathrm{4}^{\mathrm{260}} ×\mathrm{ln}\:\mathrm{4} \\ $$$$\Rightarrow\left(\mathrm{260}−{x}\right)\mathrm{ln}\:\mathrm{4}={W}\left(\mathrm{4}^{\mathrm{260}} ×\mathrm{ln}\:\mathrm{4}\right) \\ $$$$\Rightarrow{x}=\mathrm{260}−\frac{{W}\left(\mathrm{4}^{\mathrm{260}} ×\mathrm{ln}\:\mathrm{4}\right)}{\mathrm{ln}\:\mathrm{4}}=\mathrm{4} \\ $$
Commented by necx122 last updated on 13/Mar/24
This is so clear and understandable. Thank you sir.
Commented by necx122 last updated on 13/Mar/24
Meanwhile, is the Lambert W function  supposed to give us other values?  How do we calculate for others?  What calculators do we use for  computing the lambart W function.
$${Meanwhile},\:{is}\:{the}\:{Lambert}\:{W}\:{function} \\ $$$${supposed}\:{to}\:{give}\:{us}\:{other}\:{values}? \\ $$$${How}\:{do}\:{we}\:{calculate}\:{for}\:{others}? \\ $$$${What}\:{calculators}\:{do}\:{we}\:{use}\:{for} \\ $$$${computing}\:{the}\:{lambart}\:{W}\:{function}. \\ $$
Commented by mr W last updated on 13/Mar/24
i use wolframalpha
$${i}\:{use}\:{wolframalpha} \\ $$
Commented by mr W last updated on 13/Mar/24
Commented by mr W last updated on 13/Mar/24

Leave a Reply

Your email address will not be published. Required fields are marked *