Menu Close

calculate-3xdx-1-x-4-plsssssss-




Question Number 205245 by pticantor last updated on 13/Mar/24
calculate       ∫((3xdx)/( (√(1−x^4 ))))  plsssssss
$$\boldsymbol{{calculate}} \\ $$$$\:\:\: \\ $$$$\int\frac{\mathrm{3}\boldsymbol{{xdx}}}{\:\sqrt{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{4}} }} \\ $$$$\boldsymbol{{plsssssss}} \\ $$
Answered by mr W last updated on 13/Mar/24
=(3/2)∫((d(x^2 ))/( (√(1−(x^2 )^2 ))))  =(3/2)∫(du/( (√(1−u^2 ))))  with u=x^2   =(3/2)∫((d(sin θ))/( (√(1−sin^2  θ))))  with u=sin θ  =(3/2)∫((cos θ dθ)/( cos θ))  =(3/2)∫dθ  =(3/2)θ+C  =(3/2)sin^(−1) u+C  =(3/2)sin^(−1) x^2 +C
$$=\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{d}\left({x}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}−\left({x}^{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{du}}{\:\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }}\:\:{with}\:{u}={x}^{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{sin}\:\theta\right)}{\:\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta}}\:\:{with}\:{u}=\mathrm{sin}\:\theta \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\int\frac{\mathrm{cos}\:\theta\:{d}\theta}{\:\mathrm{cos}\:\theta} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\int{d}\theta \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\theta+{C} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} {u}+{C} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} {x}^{\mathrm{2}} +{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *