Menu Close

sinx-cosx-1-sinx-cosy-1-x-




Question Number 205219 by hardmath last updated on 13/Mar/24
 { ((sinx + cosx = 1)),((sinx − cosy = 1)) :}  ⇒ x = ?
{sinx+cosx=1sinxcosy=1x=?
Answered by Rasheed.Sindhi last updated on 13/Mar/24
 { ((sinx + cosx = 1...i)),((sinx − cosy = 1...ii)) :}   ;x = ?  cos x+cos y=0  cos y=−cos x  ii ⇒sin x+cos x=1  sin^2 x+2 sin x cos x+cos^2 x=1   1+2 sin x cos x=1   sin x cos x=0  sin x=0 ∣ cos x=0  x=nπ   ∣  x=(π/2)+nπ
{sinx+cosx=1isinxcosy=1ii;x=?cosx+cosy=0cosy=cosxiisinx+cosx=1sin2x+2sinxcosx+cos2x=11+2sinxcosx=1sinxcosx=0sinx=0cosx=0x=nπx=π2+nπ
Commented by mr W last updated on 13/Mar/24
through squaring you added also  the roots for eqn. sin x+cos x=−1.  i think only x=2nπ or 2nπ+(π/2) are  suitable.
throughsquaringyouaddedalsotherootsforeqn.sinx+cosx=1.ithinkonlyx=2nπor2nπ+π2aresuitable.
Commented by Rasheed.Sindhi last updated on 13/Mar/24
Very right sir! Thanks.
Veryrightsir!Thanks.
Answered by MM42 last updated on 13/Mar/24
(√2)sin(x+(π/4))=1⇒ { ((x=2kπ)),((x=2kπ+(π/2))) :}  if x=2kπ⇒cosy=−1⇒y=(2k+1)π  if x=2kπ+(π/2)⇒cosy=0⇒y=kπ+(π/2)   ⇒Ans={(x,y) ∣ x=2kπ & y=(2kπ+1)π  or x=2kπ+(π/2) & y=kπ+(π/2)}
2sin(x+π4)=1{x=2kπx=2kπ+π2ifx=2kπcosy=1y=(2k+1)πifx=2kπ+π2cosy=0y=kπ+π2Ans={(x,y)x=2kπ&y=(2kπ+1)πorx=2kπ+π2&y=kπ+π2}

Leave a Reply

Your email address will not be published. Required fields are marked *