pi-2-pi-2-8-2-cosx-1-e-sinx-1-sin-4-x-dx-api-blog-3-2-2-then-find-a-b- Tinku Tara March 14, 2024 Integration 0 Comments FacebookTweetPin Question Number 205279 by gopikrishnan last updated on 14/Mar/24 ∫−π/2π/282cosx(1+esinx)(1+sinx4)dx=aπ+blog(3+22)thenfinda+b Answered by Berbere last updated on 14/Mar/24 x→−xΩ=∫−π2π282cos(x)(1+esin(x))(1+sin4(x))dx=∫π2−π2−82cos(−x)(1+e−sin(x))(1+sin4(x))dx=Ω2Ω=∫−π2π282cos(x)1+sin4(x);sin(x)=y2Ω=∫−1182dy1+y4⇒Ω=∫0182dy(y2+1+y2)(y2+1−y2)82(y4+1)=ay+by2+1+y2+cy+dy2+1−y2a+c=0,(−a2+b+c2+d)=0b+d=82;(a+c+d2−b2)=0a−c=8d−b=0d=b=42;a=4,c=−44y+42y2+y2+1+−4y+42y2+1−y22(2y+2)y2+y2+1+22(y+12)2+12+−2(2y−2)y2+1−y2+22(y−12)2+12∫82y4+1dy=2ln(y2+y2+1y2−y2+1)+4tan−1(y2+1)+4tan−1(y2−1)+cΩ=2ln(2+22−2)+4(tan−1(2+1)+tan−1(2−1)−tan−1(1)−tan−1(−1))=2ln(6+422)+4(tan−1(2+1)+tan−1(12+1))2ln(3+22)+4.π2=2π+2ln(3+22) Commented by gopikrishnan last updated on 16/Mar/24 thanku Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-205288Next Next post: Question-205315 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.