Menu Close

Question-205269




Question Number 205269 by cherokeesay last updated on 14/Mar/24
Answered by som(math1967) last updated on 14/Mar/24
 ∫_(−2) ^2 2f(x)dx  [ ∵f(x)=f(−x)]  =2∫_(−2) ^2 f(x)dx  =4∫_0 ^2 f(x)dx   [∵ f(x)=f(−x) ∴∫_(−2) ^2 f(x)dx=2∫_0 ^2 f(x)dx]  =4×−4=−16
$$\:\int_{−\mathrm{2}} ^{\mathrm{2}} \mathrm{2}{f}\left({x}\right){dx}\:\:\left[\:\because{f}\left({x}\right)={f}\left(−{x}\right)\right] \\ $$$$=\mathrm{2}\int_{−\mathrm{2}} ^{\mathrm{2}} {f}\left({x}\right){dx} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}\right){dx}\: \\ $$$$\left[\because\:{f}\left({x}\right)={f}\left(−{x}\right)\:\therefore\int_{−\mathrm{2}} ^{\mathrm{2}} {f}\left({x}\right){dx}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}\right){dx}\right] \\ $$$$=\mathrm{4}×−\mathrm{4}=−\mathrm{16} \\ $$
Commented by cherokeesay last updated on 14/Mar/24
thank you.
$${thank}\:{you}. \\ $$
Answered by Sutrisno last updated on 14/Mar/24
∫_(−2) ^2 (f(x)+f(−x))dx  =2∫_0 ^2 (f(x)+f(−x))dx  =2(∫_0 ^2 f(x)dx+∫_0 ^2 f(−x)dx)  =2(∫_0 ^2 f(x)dx+∫_0 ^2 f(x)dx)  =2(−4−4)  =−16
$$\int_{−\mathrm{2}} ^{\mathrm{2}} \left({f}\left({x}\right)+{f}\left(−{x}\right)\right){dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}} \left({f}\left({x}\right)+{f}\left(−{x}\right)\right){dx} \\ $$$$=\mathrm{2}\left(\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}\right){dx}+\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left(−{x}\right){dx}\right) \\ $$$$=\mathrm{2}\left(\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}\right){dx}+\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}\right){dx}\right) \\ $$$$=\mathrm{2}\left(−\mathrm{4}−\mathrm{4}\right) \\ $$$$=−\mathrm{16} \\ $$
Commented by cherokeesay last updated on 14/Mar/24
thanks !
$${thanks}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *