Question Number 205289 by mr W last updated on 14/Mar/24
Answered by A5T last updated on 16/Mar/24
Commented by A5T last updated on 16/Mar/24
$${General}\:{idea},\:{there}\:{could}\:{be}\:{a}\:{far}\:{more}\:{simpler} \\ $$$${solution}. \\ $$
Commented by A5T last updated on 16/Mar/24
$${Let}\:{O}\:{be}\:{the}\:{centreof}\:{the}\:{biggest}\:{circle},\Omega,{and} \\ $$$${let}\:{O}'\:{be}\:{the}\:{centre}\:{of}\:{the}\:{middle}\:{circle}\:{on}\:{diameter}\:{of}\:\Omega. \\ $$$${Then}\:{O}'{P}_{\mathrm{1}} ={r}_{\mathrm{5}} +{r}_{\mathrm{1}} ,{OP}_{\mathrm{1}} =\mathrm{68}−{r}_{\mathrm{1}} \\ $$$$\left(\mathrm{68}−{r}_{\mathrm{1}} \right)^{\mathrm{2}} =\mathrm{42}.\mathrm{5}^{\mathrm{2}} +\left(\mathrm{25}.\mathrm{5}+{r}_{\mathrm{1}} \right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{42}.\mathrm{5}\right)\left(\mathrm{25}.\mathrm{5}+{r}_{\mathrm{1}} \right){cos}\theta \\ $$$$\Rightarrow{r}_{\mathrm{1}} =−\frac{\mathrm{255}\left({cos}\theta+\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{5}{cos}\theta−\mathrm{11}\right)} \\ $$$${O}'{a}={r}_{\mathrm{5}} +\mathrm{25}.\mathrm{5},{aP}_{\mathrm{1}} =\mathrm{25}.\mathrm{5}+{r}_{\mathrm{1}} ,{O}'{P}_{\mathrm{1}} ={r}_{\mathrm{5}} +{r}_{\mathrm{1}} \\ $$$$\left({r}_{\mathrm{5}} +{r}_{\mathrm{1}} \right)^{\mathrm{2}} =\left({r}_{\mathrm{5}} +\mathrm{25}.\mathrm{5}\right)^{\mathrm{2}} +\left({r}_{\mathrm{1}} +\mathrm{25}.\mathrm{5}\right)^{\mathrm{2}} −\mathrm{2}\left({r}_{\mathrm{5}} +\mathrm{25}.\mathrm{5}\right)\left({r}_{\mathrm{1}} +\mathrm{25}.\mathrm{5}\right){cos}\theta \\ $$$$\Rightarrow\left({r}_{\mathrm{5}} −\frac{\mathrm{255}\left({cos}\theta+\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{5}{cos}\theta−\mathrm{11}\right)}\right)^{\mathrm{2}} =\left({r}_{\mathrm{5}} +\mathrm{25}.\mathrm{5}\right)^{\mathrm{2}} +\left(\mathrm{25}.\mathrm{5}−\frac{\mathrm{255}\left({cos}\theta+\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{5}{cos}\theta−\mathrm{11}\right)}\right)^{\mathrm{2}} \\ $$$$−\mathrm{2}\left({r}_{\mathrm{5}} +\mathrm{25}.\mathrm{5}\right)\left(\frac{−\mathrm{255}{cos}\left(\theta+\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{5}{cos}\theta−\mathrm{11}\right)}+\mathrm{25}.\mathrm{5}\right){cos}\theta \\ $$$$\Rightarrow{Then},{express}\:{r}_{\mathrm{5}} \:{in}\:{terms}\:{of}\:{cos}\theta \\ $$$$\mathrm{2}{r}_{\mathrm{3}} +\mathrm{2}{r}_{\mathrm{5}} =\mathrm{85}\Rightarrow{r}_{\mathrm{3}} +{r}_{\mathrm{5}} =\mathrm{42}.\mathrm{5}\Rightarrow{r}_{\mathrm{3}} =\mathrm{42}.\mathrm{5}−{r}_{\mathrm{5}} \\ $$$${Let}\:\beta=\angle{P}_{\mathrm{2}} {P}_{\mathrm{3}} {O}' \\ $$$${Then},\:\left({r}_{\mathrm{5}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} =\left({r}_{\mathrm{3}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{42}.\mathrm{5}^{\mathrm{2}} −\mathrm{85}\left({r}_{\mathrm{3}} +{r}_{\mathrm{2}} \right){cos}\beta…\left({i}\right) \\ $$$${ii}:\:\left(\mathrm{68}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} =\left(\mathrm{68}−{r}_{\mathrm{3}} \right)^{\mathrm{2}} +\left({r}_{\mathrm{3}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{68}−{r}_{\mathrm{3}} \right)\left({r}_{\mathrm{3}} +{r}_{\mathrm{2}} \right){cos}\beta \\ $$$${ii}\Rightarrow{cos}\beta=\frac{\left(\mathrm{68}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\left(\mathrm{68}+\frac{\mathrm{204}}{\mathrm{5}{cos}\theta−\mathrm{3}}−\mathrm{42}.\mathrm{5}\right)^{\mathrm{2}} −\left(\mathrm{42}.\mathrm{5}−\frac{\mathrm{204}}{\mathrm{5}{cos}\theta−\mathrm{3}}+{r}_{\mathrm{2}} \right)^{\mathrm{2}} }{−\mathrm{2}\left(\mathrm{68}+\frac{\mathrm{204}}{\mathrm{5}{cos}\theta−\mathrm{3}}−\mathrm{42}.\mathrm{5}\right)\left(\mathrm{42}.\mathrm{5}−\frac{\mathrm{204}}{\mathrm{5}{cos}\theta−\mathrm{3}}+{r}_{\mathrm{2}} \right)} \\ $$$${i}\Rightarrow{cos}\beta=\frac{\left({r}_{\mathrm{5}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\left({r}_{\mathrm{3}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{42}.\mathrm{5}^{\mathrm{2}} }{−\mathrm{85}\left({r}_{\mathrm{3}} +{r}_{\mathrm{2}} \right)} \\ $$$${Express}\:{r}_{\mathrm{2}} \:{in}\:{terms}\:{of}\:{cos}\theta\:\:{by}\:{equating}\:{cos}\beta\: \\ $$$${of}\:\left({ii}\right)\:{and}\:\left({i}\right) \\ $$$${If}\:{we}\:{can}\:{find}\:\theta\:{or}\:{cos}\theta,{then}\:{the}\:{rest}\:{would}\:{be}\:{easy}. \\ $$