Menu Close

If-ax-2-bx-c-0-had-two-roots-p-and-q-and-p-2-q-2-p-3-q-3-then-show-that-b-3-2a-2-c-ab-2-3abc-




Question Number 205353 by MATHEMATICSAM last updated on 17/Mar/24
If ax^2  + bx + c = 0 had two roots p and q  and p^2  + q^2  = p^3  + q^3  then show that  b^3  − 2a^2 c + ab^2  = 3abc.
Ifax2+bx+c=0hadtworootspandqandp2+q2=p3+q3thenshowthatb32a2c+ab2=3abc.
Answered by sniper237 last updated on 17/Mar/24
p^2 +q^2 =(p+q)^2 −2pq=(b^2 /a^2 )−((2c)/a)  p^3 +q^3 =(p+q)^3 −3pq(p+q)=−(b^3 /a^3 )+((3bc)/a^2 )  ⇒^(×a^3 )  −b^3 +3abc=ab^2 −2ac
p2+q2=(p+q)22pq=b2a22cap3+q3=(p+q)33pq(p+q)=b3a3+3bca2×a3b3+3abc=ab22ac
Answered by A5T last updated on 17/Mar/24
p+q=((−b)/a),pq=(c/a)  (p+q)^2 −2pq=(p+q)^3 −3pq(p+q)  ⇒(b^2 /a^2 )−((2c)/a)=((−b^3 )/a^3 )+((3bc)/a^2 )⇒ab^2 −2a^2 c=−b^3 +3abc
p+q=ba,pq=ca(p+q)22pq=(p+q)33pq(p+q)b2a22ca=b3a3+3bca2ab22a2c=b3+3abc

Leave a Reply

Your email address will not be published. Required fields are marked *