Question Number 205379 by cortano12 last updated on 19/Mar/24
Answered by MM42 last updated on 19/Mar/24
$${hop}\rightarrow={lim}_{{x}\rightarrow\mathrm{0}} \frac{−{cosx}×{sin}\left({sinx}\right)+{sinx}}{\mathrm{4}{x}^{\mathrm{3}} } \\ $$$${hop}\rightarrow=\frac{{sinx}×{sin}\left({sinx}\right)−{cos}^{\mathrm{2}} {x}×{cos}\left({sinx}\right)+{cosx}}{\mathrm{12}{x}^{\mathrm{2}} } \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{cosx}\left(\mathrm{1}−{cosx}\right)}{\mathrm{12}{x}^{\mathrm{2}} } \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} }{\mathrm{12}}=\frac{\mathrm{1}}{\mathrm{24}}\:\:\checkmark \\ $$$$ \\ $$
Commented by Frix last updated on 20/Mar/24
$$\mathrm{I}\:\mathrm{get}\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Answered by namphamduc last updated on 22/Mar/24
$$ \\ $$$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\left(\mathrm{sin}\left({x}\right)\right)−\mathrm{cos}\left({x}\right)}{{x}^{\mathrm{4}} }=−\mathrm{2}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left(\frac{\mathrm{sin}\left({x}\right)+{x}}{\mathrm{2}}\right)\mathrm{sin}\left(\frac{\mathrm{sin}\left({x}\right)−{x}}{\mathrm{2}}\right)}{{x}^{\mathrm{4}} } \\ $$$$=−\mathrm{2}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left(\frac{\mathrm{sin}\left({x}\right)+{x}}{\mathrm{2}}\right)}{\frac{\mathrm{sin}\left({x}\right)+{x}}{\mathrm{2}}}\centerdot\frac{\mathrm{sin}\left(\frac{\mathrm{sin}\left({x}\right)−{x}}{\mathrm{2}}\right)}{\frac{\mathrm{sin}\left({x}\right)−{x}}{\mathrm{2}}}.\frac{\mathrm{sin}\left({x}\right)+{x}}{\mathrm{2}{x}}.\frac{\mathrm{sin}\left({x}\right)−{x}}{\mathrm{2}{x}^{\mathrm{3}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left({x}\right)−{x}}{{x}^{\mathrm{3}} }=−\frac{\mathrm{1}}{\mathrm{6}}\:\mathrm{is}\:\mathrm{well}−\mathrm{known} \\ $$$$\Rightarrow{L}=−\mathrm{2}.\mathrm{1}.\mathrm{1}.\frac{\mathrm{1}+\mathrm{1}}{\mathrm{2}}\left(−\frac{\mathrm{1}}{\mathrm{6}}\right)\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$