Menu Close

If-a-3-b-3-a-2-b-2-4-Then-a-4-b-4-2-




Question Number 205420 by hardmath last updated on 20/Mar/24
If  a^3  + b^3  + a^2  + b^2  = 4  Then:  a^4  + b^4  ≥ 2
Ifa3+b3+a2+b2=4Then:a4+b42
Answered by Berbere last updated on 21/Mar/24
2(a^4 +b^4 )+a^2 +b^2 +1+1  =a^4 +a^2 +b^4 +b^2 +a^4 +1+b^4 +1  ≥^(AM−GM) 2∣a^3 ∣+2∣b^3 ∣+2a^2 +2b^2 ≥2(a^3 +b^3 +a^2 +b^2 )=8  2(a^4 +b^4 )+a^2 +b^2 ≥6  a^4 +b^4 ≥^(AM−QM) (((a^2 +b^2 )^2 )/2);X=a^2 +b^2 ≥0  a^4 +b^4 ≥Max(((6−X)/2),(X^2 /2))=(1/2)Max(6−X,X^2 )  X^2 +X−6=(X+3)(X−2)    X∈[−3,2]  max((X^2 /2),(1/2)(6−X))=(1/2)(6−X)≥((6−2)/2)=2  X≤−3; Max((x^2 /2),((6−x)/2))=(((−3)^2 )/2)≥2  X≥2  Max((X^2 /2),((6−X)/2))=(X^2 /2)≥2  ⇒∀X=a^2 +b^2 ∈[0,∞[  a^4 +b^4 ≥2
2(a4+b4)+a2+b2+1+1=a4+a2+b4+b2+a4+1+b4+1AMGM2a3+2b3+2a2+2b22(a3+b3+a2+b2)=82(a4+b4)+a2+b26a4+b4AMQM(a2+b2)22;X=a2+b20a4+b4Max(6X2,X22)=12Max(6X,X2)X2+X6=(X+3)(X2)X[3,2]max(X22,12(6X))=12(6X)622=2X3;Max(x22,6x2)=(3)222X2Max(X22,6X2)=X222X=a2+b2[0,[a4+b42
Commented by hardmath last updated on 21/Mar/24
thank you dear professor cool
thankyoudearprofessorcool

Leave a Reply

Your email address will not be published. Required fields are marked *