Menu Close

If-a-b-R-Then-a-2-b-2-ab-a-4-b-4-2-




Question Number 205423 by hardmath last updated on 20/Mar/24
If  a , b ∈ R  Then:  a^2  + b^2  ≥ ab + (√((a^4  + b^4 )/2))
Ifa,bRThen:a2+b2ab+a4+b42
Answered by Berbere last updated on 21/Mar/24
⇔(a^2 +b^2 −ab)^2 ≥((a^4 +b^4 )/2)  ⇔((a^4 +b^4 )/2)+3a^2 b^2 −2ab(a^2 +b^2 )≥0  a^4 +b^4 =(a^2 +b^2 )^2 −2a^2 b^2   ⇔(((a^2 +b^2 )^2 −2a^2 b^2 )/2)+3a^2 b^2 −2ab(a^2 +b^2 )≥0  ⇔(a^2 +b^2 )^2 +(2ab)^2 −2(2ab)(a^2 +b^2 )≥0  ⇔(a^2 +b^2 −2ab)^2 ≥0True
(a2+b2ab)2a4+b42a4+b42+3a2b22ab(a2+b2)0a4+b4=(a2+b2)22a2b2(a2+b2)22a2b22+3a2b22ab(a2+b2)0(a2+b2)2+(2ab)22(2ab)(a2+b2)0(a2+b22ab)20True
Commented by Skabetix last updated on 22/Mar/24
comment passer de   (a^2 +b^2 −ab)^2  ≥((a^4 +b^4 )/2)  a     ((a^4 +b^4 )/2)+3a^2 b^2 −2ab(a^2 +b^2 )≥0?
commentpasserde(a2+b2ab)2a4+b42aa4+b42+3a2b22ab(a2+b2)0?
Commented by Berbere last updated on 24/Mar/24
squar  a^4 +b^4 +2a^2 b^2 +a^2 b^2 −2ab(a^2 +b^2 )≥((a^4 +b^4 )/2)  ⇒a^4 +b^4 −((a^4 +b^4 )/2)+3a^2 b^2 −2ab(a^2 +b^2 )≥0  ((a^4 +b^4 )/2)+3a^2 b^2 −2ab(a^2 +b^2 )≥0
squara4+b4+2a2b2+a2b22ab(a2+b2)a4+b42a4+b4a4+b42+3a2b22ab(a2+b2)0a4+b42+3a2b22ab(a2+b2)0

Leave a Reply

Your email address will not be published. Required fields are marked *