Question Number 205406 by mr W last updated on 20/Mar/24
Commented by lepuissantcedricjunior last updated on 21/Mar/24
$$\boldsymbol{{d}}'\boldsymbol{{apre}}'\boldsymbol{{s}}\:\boldsymbol{{pythagore}}\: \\ $$$$\boldsymbol{{d}}^{\mathrm{2}} =\mathrm{7}^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} \:\left(\mathrm{1}\right) \\ $$$$\boldsymbol{{d}}'\boldsymbol{{apres}}\:\boldsymbol{{alkashil}} \\ $$$$\mathrm{15}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} =\boldsymbol{{k}}^{\mathrm{2}} +\mathrm{2}Γ\mathrm{15}^{\mathrm{2}} \boldsymbol{{cos}}\left(\boldsymbol{\pi}β\boldsymbol{{a}}\right) \\ $$$$\mathrm{2}.\mathrm{15}^{\mathrm{2}} \:\:\:\:\:\:\:=\boldsymbol{{k}}^{\mathrm{2}} β\mathrm{2}.\mathrm{15}^{\mathrm{2}} \boldsymbol{{cosa}} \\ $$$$\boldsymbol{{k}}^{\mathrm{2}} =\mathrm{2}.\mathrm{15}^{\mathrm{2}} \:\left(\mathrm{1}+\boldsymbol{{cos}}^{\mathrm{2}} \boldsymbol{{a}}\right)\:\left(\mathrm{2}\right) \\ $$$$\frac{\boldsymbol{{k}}}{\boldsymbol{{sin}}\left(\boldsymbol{\pi}β\boldsymbol{{a}}\right)}=\frac{\mathrm{15}}{\boldsymbol{{sina}}}=\frac{\mathrm{15}^{\mathrm{2}} \boldsymbol{{k}}}{\mathrm{2}\boldsymbol{{A}}}=\mathrm{2}{r}={d} \\ $$$$\frac{\boldsymbol{{k}}}{\boldsymbol{{cosa}}}=\frac{\mathrm{15}}{\boldsymbol{{sina}}}=\frac{\mathrm{15}^{\mathrm{2}} .\boldsymbol{{k}}}{\mathrm{2}\boldsymbol{{A}}}=\boldsymbol{{d}} \\ $$$$\boldsymbol{{cos}}\left(\boldsymbol{{a}}\right)=\frac{\boldsymbol{{k}}}{\boldsymbol{{d}}}\:\left(\mathrm{2}\right)\:\boldsymbol{{remplacons}}\:\boldsymbol{{dans}}\:\left(\mathrm{2}\right) \\ $$$$\boldsymbol{{k}}^{\mathrm{2}} =\mathrm{2}.\mathrm{15}^{\mathrm{2}} \left(\mathrm{1}+\frac{\boldsymbol{{k}}^{\mathrm{2}} }{\boldsymbol{{d}}^{\mathrm{2}} }\right)=\frac{\left(\mathrm{15}\boldsymbol{{d}}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{15}\sqrt{\mathrm{2}}\boldsymbol{{k}}\right)^{\mathrm{2}} }{\boldsymbol{{d}}^{\mathrm{2}} } \\ $$$$\boldsymbol{{k}}^{\mathrm{2}} \boldsymbol{{d}}^{\mathrm{2}} β\left(\mathrm{15}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \boldsymbol{{k}}^{\mathrm{2}} =\mathrm{2}.\mathrm{15}^{\mathrm{2}} \boldsymbol{{d}}^{\mathrm{2}} \\ $$$$\boldsymbol{{k}}^{\mathrm{2}} =\frac{\mathrm{2}.\mathrm{15}^{\mathrm{2}} \boldsymbol{{d}}^{\mathrm{2}} }{\boldsymbol{{d}}^{\mathrm{2}} β\mathrm{2}.\mathrm{15}^{\mathrm{2}} }\:\:\:\left(\mathrm{3}\right)\:\boldsymbol{{remplacons}}\:\boldsymbol{{dans}}\left(\mathrm{1}\right) \\ $$$$\boldsymbol{{d}}^{\mathrm{2}} =\mathrm{7}^{\mathrm{2}} +\frac{\mathrm{2}.\mathrm{15}^{\mathrm{2}} \boldsymbol{{d}}^{\mathrm{2}} }{\boldsymbol{{d}}^{\mathrm{2}} β\mathrm{2}.\mathrm{15}^{\mathrm{2}} } \\ $$$$=>\boldsymbol{{d}}^{\mathrm{4}} β\boldsymbol{{d}}^{\mathrm{2}} \left(\mathrm{7}^{\mathrm{2}} +\mathrm{2}.\mathrm{15}^{\mathrm{2}} \right)+\mathrm{2}.\left(\mathrm{7}.\mathrm{15}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Leftrightarrow\boldsymbol{\mathrm{d}}^{\mathrm{4}} β\boldsymbol{\mathrm{d}}^{\mathrm{2}} \left(\mathrm{49}+\mathrm{450}\right)+\mathrm{2}\left(\mathrm{105}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\boldsymbol{\mathrm{posons}}\:\boldsymbol{\mathrm{d}}^{\mathrm{2}} =\boldsymbol{\mathrm{X}}=>\boldsymbol{{d}}^{\mathrm{4}} =\boldsymbol{{X}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{X}}^{\mathrm{2}} β\mathrm{499}\boldsymbol{\mathrm{X}}+\mathrm{22050}=\mathrm{0} \\ $$$$\bigtriangleup=\mathrm{249001}β\mathrm{88200}=\mathrm{160801}=\mathrm{401}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{X}}=\frac{\mathrm{499}β\mathrm{401}}{\mathrm{2}}=\mathrm{49} \\ $$$$\mathrm{X}=\frac{\mathrm{499}+\mathrm{401}}{\mathrm{2}}=\mathrm{450} \\ $$$${or}\:\boldsymbol{\mathrm{X}}=\boldsymbol{{d}}^{\mathrm{2}} =>\boldsymbol{{d}}=\sqrt{\mathrm{49}}=\mathrm{7}\:\boldsymbol{{impossible}} \\ $$$$\boldsymbol{{d}}=\sqrt{\mathrm{450}}=\mathrm{15}\sqrt{\mathrm{2}} \\ $$$$\boldsymbol{{d}}\:\boldsymbol{{ou}} \\ $$$$\begin{array}{|c|c|}{\boldsymbol{{d}}\neq\mathrm{7}}\\{\boldsymbol{{d}}=\mathrm{15}\sqrt{\mathrm{2}}\:\sqrt{}}\\\hline\end{array} \\ $$$$============================= \\ $$$$……………{le}\:{puissant}\:{D}\boldsymbol{{r}}……… \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 21/Mar/24
$${please}\:{post}\:{your}\:{answer}\:{to}\:{a}\:{question} \\ $$$${as}\:“{answer}'',\:{not}\:{as}\:“{comment}''!\:{thanks}! \\ $$$${btw},\:{your}\:{answer}\:\mathrm{15}\sqrt{\mathrm{2}}\:{is}\:{wrong}. \\ $$
Answered by A5T last updated on 20/Mar/24
$$\sqrt{\mathrm{15}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} β\mathrm{2}Γ\mathrm{15}^{\mathrm{2}} {cos}\theta}=\sqrt{\mathrm{7}^{\mathrm{2}} +{d}^{\mathrm{2}} +\mathrm{14}{dcos}\theta} \\ $$$$\Rightarrow\mathrm{401}β\mathrm{450}{cos}\theta={d}^{\mathrm{2}} +\mathrm{14}{dcos}\theta\Rightarrow{cos}\theta=\frac{{d}^{\mathrm{2}} β\mathrm{401}}{β\mathrm{450}β\mathrm{14}{d}} \\ $$$${r}^{\mathrm{2}} =\mathrm{7}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}Γ\mathrm{7}{rcos}\theta\Rightarrow{dcos}\theta=β\mathrm{7}\Rightarrow{cos}\theta=\frac{β\mathrm{7}}{{d}} \\ $$$$\Rightarrow\frac{{d}^{\mathrm{2}} β\mathrm{401}}{β\mathrm{450}β\mathrm{14}{d}}=\frac{β\mathrm{7}}{{d}}\Rightarrow{d}=\mathrm{25} \\ $$
Commented by A5T last updated on 20/Mar/24
Commented by A5T last updated on 20/Mar/24
$${General}\:{formula},\:{take}\:{a}=\mathrm{7},{b}=\mathrm{15},{c}=\mathrm{15},{d}=\mathrm{2}{R} \\ $$
Commented by mr W last updated on 20/Mar/24
$${thanks}! \\ $$
Answered by mr W last updated on 20/Mar/24
Commented by mr W last updated on 20/Mar/24
$${R}^{\mathrm{2}} β\left(\frac{\mathrm{7}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{15}^{\mathrm{2}} β\left({R}β\frac{\mathrm{7}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{R}^{\mathrm{2}} β\mathrm{7}{R}β\mathrm{15}^{\mathrm{2}} =\mathrm{0} \\ $$$${R}=\frac{\mathrm{7}+\sqrt{\mathrm{49}+\mathrm{8}Γ\mathrm{15}^{\mathrm{2}} }}{\mathrm{4}}=\mathrm{12}.\mathrm{5} \\ $$$$\Rightarrow{d}=\mathrm{2}{R}=\mathrm{25}\:\checkmark \\ $$
Answered by cortano12 last updated on 20/Mar/24
$$\:\:\Rightarrow\:\mathrm{7}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} +\frac{\mathrm{7}.\mathrm{15}.\mathrm{15}}{\mathrm{R}}=\mathrm{4R}^{\mathrm{2}} \\ $$$$\:\Rightarrow\mathrm{499}+\frac{\mathrm{1575}}{\mathrm{R}}=\:\mathrm{4R}^{\mathrm{2}} \\ $$$$\:\Rightarrow\mathrm{4R}^{\mathrm{3}} β\mathrm{499R}β\mathrm{1575}=\mathrm{0} \\ $$$$\:\Rightarrow\left(\mathrm{2R}β\mathrm{25}\right)\left(\mathrm{R}+\mathrm{9}\right)\left(\mathrm{2R}+\mathrm{7}\right)=\mathrm{0} \\ $$$$\:\:\Rightarrow\:\mathrm{d}\:=\:\mathrm{2R}\:=\:\mathrm{25}\: \\ $$
Commented by mr W last updated on 20/Mar/24