Menu Close

Find-0-2-ln-sinx-1-sin-2-x-dx-




Question Number 205432 by hardmath last updated on 21/Mar/24
Find:  Ω = ∫_0 ^( 2𝛑)  ln (sinx + (√(1 + sin^2  x))) dx
Find:Ω=02πln(sinx+1+sin2x)dx
Answered by MathedUp last updated on 21/Mar/24
0  cauz −f(z)=f(−z) , f(z+π)=−f(z) , f(z+2π)=f(z)  So , f(z) is periodic function that having period π  ∫_0 ^(2π)  f(z)dz=0
0cauzf(z)=f(z),f(z+π)=f(z),f(z+2π)=f(z)So,f(z)isperiodicfunctionthathavingperiodπ02πf(z)dz=0
Answered by mr W last updated on 21/Mar/24
Ω=∫_0 ^(2π) ln (sin x+(√(1+sin^2  x)))dx    =∫_0 ^π ln (sin x+(√(1+sin^2  x)))dx+∫_π ^(2π) ln (sin x+(√(1+sin^2  x)))dx    =∫_0 ^π ln (sin x+(√(1+sin^2  x)))dx+∫_0 ^π ln (sin (x+π)+(√(1+sin^2  (x+π))))d(x+π)    =∫_0 ^π ln (sin x+(√(1+sin^2  x)))dx+∫_0 ^π ln (−sin x+(√(1+sin^2  x)))dx    =∫_0 ^π ln (sin x+(√(1+sin^2  x)))dx+∫_0 ^π ln (1/(sin x+(√(1+sin^2  x))))dx    =∫_0 ^π ln (sin x+(√(1+sin^2  x)))dx−∫_0 ^π ln (sin x+(√(1+sin^2  x)))dx    =0
Ω=02πln(sinx+1+sin2x)dx=0πln(sinx+1+sin2x)dx+π2πln(sinx+1+sin2x)dx=0πln(sinx+1+sin2x)dx+0πln(sin(x+π)+1+sin2(x+π))d(x+π)=0πln(sinx+1+sin2x)dx+0πln(sinx+1+sin2x)dx=0πln(sinx+1+sin2x)dx+0πln1sinx+1+sin2xdx=0πln(sinx+1+sin2x)dx0πln(sinx+1+sin2x)dx=0
Commented by hardmath last updated on 21/Mar/24
cool dear professor thankyou
cooldearprofessorthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *