Find-0-2-ln-sinx-1-sin-2-x-dx- Tinku Tara March 21, 2024 Algebra 0 Comments FacebookTweetPin Question Number 205432 by hardmath last updated on 21/Mar/24 Find:Ω=∫02πln(sinx+1+sin2x)dx Answered by MathedUp last updated on 21/Mar/24 0cauz−f(z)=f(−z),f(z+π)=−f(z),f(z+2π)=f(z)So,f(z)isperiodicfunctionthathavingperiodπ∫02πf(z)dz=0 Answered by mr W last updated on 21/Mar/24 Ω=∫02πln(sinx+1+sin2x)dx=∫0πln(sinx+1+sin2x)dx+∫π2πln(sinx+1+sin2x)dx=∫0πln(sinx+1+sin2x)dx+∫0πln(sin(x+π)+1+sin2(x+π))d(x+π)=∫0πln(sinx+1+sin2x)dx+∫0πln(−sinx+1+sin2x)dx=∫0πln(sinx+1+sin2x)dx+∫0πln1sinx+1+sin2xdx=∫0πln(sinx+1+sin2x)dx−∫0πln(sinx+1+sin2x)dx=0 Commented by hardmath last updated on 21/Mar/24 cooldearprofessorthankyou Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-3cosx-8sin-30-x-Find-tanx-Next Next post: Solve-the-equation-x-21-x-77-x-165-x-285-200- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.