Menu Close

Find-0-2-ln-sinx-1-sin-2-x-dx-




Question Number 205432 by hardmath last updated on 21/Mar/24
Find:  Ξ© = ∫_0 ^( 2𝛑)  ln (sinx + (√(1 + sin^2  x))) dx
$$\mathrm{Find}:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{2}\boldsymbol{\pi}} \:\mathrm{ln}\:\left(\mathrm{sinx}\:+\:\sqrt{\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{x}}\right)\:\mathrm{dx} \\ $$
Answered by MathedUp last updated on 21/Mar/24
0  cauz βˆ’f(z)=f(βˆ’z) , f(z+Ο€)=βˆ’f(z) , f(z+2Ο€)=f(z)  So , f(z) is periodic function that having period Ο€  ∫_0 ^(2Ο€)  f(z)dz=0
$$\mathrm{0} \\ $$$$\mathrm{cauz}\:βˆ’{f}\left({z}\right)={f}\left(βˆ’{z}\right)\:,\:{f}\left({z}+\pi\right)=βˆ’{f}\left({z}\right)\:,\:{f}\left({z}+\mathrm{2}\pi\right)={f}\left({z}\right) \\ $$$$\mathrm{So}\:,\:{f}\left({z}\right)\:\mathrm{is}\:\mathrm{periodic}\:\mathrm{function}\:\mathrm{that}\:\mathrm{having}\:\mathrm{period}\:\pi \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{f}\left({z}\right)\mathrm{d}{z}=\mathrm{0} \\ $$
Answered by mr W last updated on 21/Mar/24
Ξ©=∫_0 ^(2Ο€) ln (sin x+(√(1+sin^2  x)))dx    =∫_0 ^Ο€ ln (sin x+(√(1+sin^2  x)))dx+∫_Ο€ ^(2Ο€) ln (sin x+(√(1+sin^2  x)))dx    =∫_0 ^Ο€ ln (sin x+(√(1+sin^2  x)))dx+∫_0 ^Ο€ ln (sin (x+Ο€)+(√(1+sin^2  (x+Ο€))))d(x+Ο€)    =∫_0 ^Ο€ ln (sin x+(√(1+sin^2  x)))dx+∫_0 ^Ο€ ln (βˆ’sin x+(√(1+sin^2  x)))dx    =∫_0 ^Ο€ ln (sin x+(√(1+sin^2  x)))dx+∫_0 ^Ο€ ln (1/(sin x+(√(1+sin^2  x))))dx    =∫_0 ^Ο€ ln (sin x+(√(1+sin^2  x)))dxβˆ’βˆ«_0 ^Ο€ ln (sin x+(√(1+sin^2  x)))dx    =0
$$\Omega=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{ln}\:\left(\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\right){dx} \\ $$$$\:\:=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\left(\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\right){dx}+\int_{\pi} ^{\mathrm{2}\pi} \mathrm{ln}\:\left(\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\right){dx} \\ $$$$\:\:=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\left(\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\right){dx}+\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\left(\mathrm{sin}\:\left({x}+\pi\right)+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\left({x}+\pi\right)}\right){d}\left({x}+\pi\right) \\ $$$$\:\:=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\left(\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\right){dx}+\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\left(βˆ’\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\right){dx} \\ $$$$\:\:=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\left(\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\right){dx}+\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\frac{\mathrm{1}}{\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}}{dx} \\ $$$$\:\:=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\left(\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\right){dx}βˆ’\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\:\left(\mathrm{sin}\:{x}+\sqrt{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\right){dx} \\ $$$$\:\:=\mathrm{0} \\ $$
Commented by hardmath last updated on 21/Mar/24
cool dear professor thankyou
$$\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thankyou} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *