Question Number 205429 by mnjuly1970 last updated on 21/Mar/24
$$ \\ $$$$\:\mathrm{I}{f},\:\:\varphi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\pi\:−{cos}^{\:−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)\right) \\ $$$$ \\ $$$$\:\:\:\Rightarrow\:\mathrm{log}_{\:\mathrm{2}} \left(\:\frac{\:\mathrm{1}+\:{cos}\left(\mathrm{6}\varphi\:\right)}{{cos}^{\mathrm{6}} \left(\varphi\:\right)}\:\right)\:=? \\ $$$$ \\ $$
Answered by Ghisom last updated on 21/Mar/24
$$\mathrm{using}\:\mathrm{trigonometric}\:\mathrm{formulas}\:\Rightarrow \\ $$$$\mathrm{cos}\:\mathrm{6}\varphi\:=\frac{\mathrm{11}}{\mathrm{16}} \\ $$$$\mathrm{cos}^{\mathrm{6}} \:\varphi\:=\frac{\mathrm{27}}{\mathrm{512}} \\ $$$$\mathrm{log}_{\mathrm{2}} \:\frac{\frac{\mathrm{27}}{\mathrm{16}}}{\frac{\mathrm{27}}{\mathrm{512}}}\:=\mathrm{log}_{\mathrm{2}} \:\mathrm{32}\:=\mathrm{5} \\ $$
Answered by MM42 last updated on 21/Mar/24
$${cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\alpha\Rightarrow{cos}\alpha=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${cos}\varphi={sin}\left(\frac{\mathrm{1}}{\mathrm{2}}{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\beta\Rightarrow{cos}\mathrm{2}\beta=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${sin}^{\mathrm{2}} \beta=\frac{\mathrm{1}−{cos}\mathrm{2}\beta}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\Rightarrow{cos}\varphi={sin}\beta=\frac{\sqrt{\mathrm{6}}}{\mathrm{4}} \\ $$$$\mathrm{6}\varphi=\mathrm{3}\pi−\mathrm{3}{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$${cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\alpha\Rightarrow{cos}\alpha=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{cos}\mathrm{6}\varphi=−{cos}\mathrm{3}\alpha=\mathrm{3}{cos}\alpha−\mathrm{4}{cos}^{\mathrm{3}} \alpha=\frac{\mathrm{11}}{\mathrm{16}} \\ $$$$\Rightarrow{cos}\mathrm{6}\varphi=\frac{\mathrm{11}}{\mathrm{16}} \\ $$$$\Rightarrow={log}_{\mathrm{2}} \left(\frac{\mathrm{1}+{cos}\mathrm{6}\varphi}{{cos}^{\mathrm{6}} \varphi}\right)={log}_{\mathrm{2}} \left(\frac{\frac{\mathrm{27}}{\mathrm{16}}}{\frac{\mathrm{6}^{\mathrm{3}} }{\mathrm{4}^{\mathrm{6}} }}\right)=\mathrm{5}\:\checkmark \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 22/Mar/24
$$\: \\ $$