Menu Close

Question-205428




Question Number 205428 by mr W last updated on 21/Mar/24
Answered by Rasheed.Sindhi last updated on 21/Mar/24
Commented by Rasheed.Sindhi last updated on 21/Mar/24
White area of □ABCD is composed  of four areas:I,II,III & IV  I & II : 5^2 =25 & 12^2 =144  III : (3/4)π(12)^2   IV : (3/4)π(5)^2   Blue area=■ABCD−White area  ....
$${White}\:{area}\:{of}\:\Box{ABCD}\:{is}\:{composed} \\ $$$${of}\:{four}\:{areas}:{I},{II},{III}\:\&\:{IV} \\ $$$${I}\:\&\:{II}\::\:\mathrm{5}^{\mathrm{2}} =\mathrm{25}\:\&\:\mathrm{12}^{\mathrm{2}} =\mathrm{144} \\ $$$${III}\::\:\frac{\mathrm{3}}{\mathrm{4}}\pi\left(\mathrm{12}\right)^{\mathrm{2}} \\ $$$${IV}\::\:\frac{\mathrm{3}}{\mathrm{4}}\pi\left(\mathrm{5}\right)^{\mathrm{2}} \\ $$$${Blue}\:{area}=\blacksquare{ABCD}−{White}\:{area} \\ $$$$…. \\ $$
Answered by A5T last updated on 21/Mar/24
Commented by A5T last updated on 21/Mar/24
BE=(√(s^2 +y^2 ));DF=((s(s−y))/y)⇒FE=(((s−y)(√(s^2 +y^2 )))/y)  FB=((s(√(s^2 +y^2 )))/y);AF=((s(s−y))/y)+s=(s^2 /y); ((AF×AB)/2)=(s^3 /(2y))  =6((s^2 /y)+((s(√(s^2 +y^2 )))/y)+s)⇒(s^2 /(12y))=((s+(√(s^2 +y^2 ))+y)/y)  sy=5(s+y+(√(s^2 +y^2 )))⇒sy=((5s^2 )/(12))⇒y=((5s)/(12))  ⇒((5s^2 )/(12))=5(((17s)/(12))+(√(s^2 +((25s^2 )/(144)))))=150s⇒s=30  Area of white region=  144+144π−((144π)/4)+25+25π−((25π)/4)=169+((507)/4)π  ⇒Area of blue region=s^2 −169−((507π)/4)  =900−169−((507π)/4)=731−((507π)/4) sq. units.
$${BE}=\sqrt{{s}^{\mathrm{2}} +{y}^{\mathrm{2}} };{DF}=\frac{{s}\left({s}−{y}\right)}{{y}}\Rightarrow{FE}=\frac{\left({s}−{y}\right)\sqrt{{s}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{{y}} \\ $$$${FB}=\frac{{s}\sqrt{{s}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{{y}};{AF}=\frac{{s}\left({s}−{y}\right)}{{y}}+{s}=\frac{{s}^{\mathrm{2}} }{{y}};\:\frac{{AF}×{AB}}{\mathrm{2}}=\frac{{s}^{\mathrm{3}} }{\mathrm{2}{y}} \\ $$$$=\mathrm{6}\left(\frac{{s}^{\mathrm{2}} }{{y}}+\frac{{s}\sqrt{{s}^{\mathrm{2}} +{y}^{\mathrm{2}} }}{{y}}+{s}\right)\Rightarrow\frac{{s}^{\mathrm{2}} }{\mathrm{12}{y}}=\frac{{s}+\sqrt{{s}^{\mathrm{2}} +{y}^{\mathrm{2}} }+{y}}{{y}} \\ $$$${sy}=\mathrm{5}\left({s}+{y}+\sqrt{{s}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)\Rightarrow{sy}=\frac{\mathrm{5}{s}^{\mathrm{2}} }{\mathrm{12}}\Rightarrow{y}=\frac{\mathrm{5}{s}}{\mathrm{12}} \\ $$$$\Rightarrow\frac{\mathrm{5}{s}^{\mathrm{2}} }{\mathrm{12}}=\mathrm{5}\left(\frac{\mathrm{17}{s}}{\mathrm{12}}+\sqrt{{s}^{\mathrm{2}} +\frac{\mathrm{25}{s}^{\mathrm{2}} }{\mathrm{144}}}\right)=\mathrm{150}{s}\Rightarrow{s}=\mathrm{30} \\ $$$${Area}\:{of}\:{white}\:{region}= \\ $$$$\mathrm{144}+\mathrm{144}\pi−\frac{\mathrm{144}\pi}{\mathrm{4}}+\mathrm{25}+\mathrm{25}\pi−\frac{\mathrm{25}\pi}{\mathrm{4}}=\mathrm{169}+\frac{\mathrm{507}}{\mathrm{4}}\pi \\ $$$$\Rightarrow{Area}\:{of}\:{blue}\:{region}={s}^{\mathrm{2}} −\mathrm{169}−\frac{\mathrm{507}\pi}{\mathrm{4}} \\ $$$$=\mathrm{900}−\mathrm{169}−\frac{\mathrm{507}\pi}{\mathrm{4}}=\mathrm{731}−\frac{\mathrm{507}\pi}{\mathrm{4}}\:{sq}.\:{units}. \\ $$
Commented by mr W last updated on 21/Mar/24
��
Answered by mr W last updated on 21/Mar/24
Commented by mr W last updated on 21/Mar/24
ΔCEB∽ΔABF  ((CE)/(AB))=(5/(12)) ⇒CE=((5a)/(12))  Δ_(CEB) =(1/2)×a×((5a)/(12))=(1/2)×(a+((5a)/(12))+(√(a^2 +(((5a)/(12)))^2 )))×5  ⇒a=12+5+(√(12^2 +5^2 ))=30  shaded area =30^2 −(12^2 +5^2 )−((3π)/4)(12^2 +5^2 )     =731−((507π)/4)≈332.8
$$\Delta{CEB}\backsim\Delta{ABF} \\ $$$$\frac{{CE}}{{AB}}=\frac{\mathrm{5}}{\mathrm{12}}\:\Rightarrow{CE}=\frac{\mathrm{5}{a}}{\mathrm{12}} \\ $$$$\Delta_{{CEB}} =\frac{\mathrm{1}}{\mathrm{2}}×{a}×\frac{\mathrm{5}{a}}{\mathrm{12}}=\frac{\mathrm{1}}{\mathrm{2}}×\left({a}+\frac{\mathrm{5}{a}}{\mathrm{12}}+\sqrt{{a}^{\mathrm{2}} +\left(\frac{\mathrm{5}{a}}{\mathrm{12}}\right)^{\mathrm{2}} }\right)×\mathrm{5} \\ $$$$\Rightarrow{a}=\mathrm{12}+\mathrm{5}+\sqrt{\mathrm{12}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} }=\mathrm{30} \\ $$$${shaded}\:{area}\:=\mathrm{30}^{\mathrm{2}} −\left(\mathrm{12}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} \right)−\frac{\mathrm{3}\pi}{\mathrm{4}}\left(\mathrm{12}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} \right) \\ $$$$\:\:\:=\mathrm{731}−\frac{\mathrm{507}\pi}{\mathrm{4}}\approx\mathrm{332}.\mathrm{8} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *