Menu Close

Question-205461




Question Number 205461 by mr W last updated on 21/Mar/24
Commented by mr W last updated on 21/Mar/24
find the area of the third part   between two squares.
$${find}\:{the}\:{area}\:{of}\:{the}\:{third}\:{part}\: \\ $$$${between}\:{two}\:{squares}. \\ $$
Answered by mr W last updated on 22/Mar/24
Commented by mr W last updated on 22/Mar/24
green hatched area=250+150=400  blue hatched area=unknown area ?  due to symmetry   blue hatched area=green hatched area  ⇒?=250+150=400 ✓
$${green}\:{hatched}\:{area}=\mathrm{250}+\mathrm{150}=\mathrm{400} \\ $$$${blue}\:{hatched}\:{area}={unknown}\:{area}\:? \\ $$$${due}\:{to}\:{symmetry}\: \\ $$$${blue}\:{hatched}\:{area}={green}\:{hatched}\:{area} \\ $$$$\Rightarrow?=\mathrm{250}+\mathrm{150}=\mathrm{400}\:\checkmark \\ $$
Answered by A5T last updated on 21/Mar/24
(((a+s)e)/2)=250;(((a+s)d)/2)=150  ⇒(((a+s)(d+e))/2)=400⇒s^2 −a^2 =800  a^2 +400+?=s^2 ⇒s^2 −a^2 =400+?=800⇒?=400cm^2
$$\frac{\left({a}+{s}\right){e}}{\mathrm{2}}=\mathrm{250};\frac{\left({a}+{s}\right){d}}{\mathrm{2}}=\mathrm{150} \\ $$$$\Rightarrow\frac{\left({a}+{s}\right)\left({d}+{e}\right)}{\mathrm{2}}=\mathrm{400}\Rightarrow{s}^{\mathrm{2}} −{a}^{\mathrm{2}} =\mathrm{800} \\ $$$${a}^{\mathrm{2}} +\mathrm{400}+?={s}^{\mathrm{2}} \Rightarrow{s}^{\mathrm{2}} −{a}^{\mathrm{2}} =\mathrm{400}+?=\mathrm{800}\Rightarrow?=\mathrm{400}{cm}^{\mathrm{2}} \\ $$
Commented by mr W last updated on 22/Mar/24
��
Commented by A5T last updated on 21/Mar/24

Leave a Reply

Your email address will not be published. Required fields are marked *