Question Number 205502 by MATHEMATICSAM last updated on 22/Mar/24
$$\mathrm{If}\:\mathrm{two}\:\mathrm{roots}\:\mathrm{of}\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{are}\:\alpha\:\mathrm{and}\: \\ $$$$\beta\:\mathrm{then}\:\frac{\mathrm{1}}{\left({a}\alpha^{\mathrm{2}} \:+\:{c}\right)^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\left({a}\beta^{\mathrm{2}} \:+\:{c}\right)^{\mathrm{2}} }\:=\:? \\ $$
Answered by Rasheed.Sindhi last updated on 23/Mar/24
$$\mathrm{Another}\:\mathrm{Way} \\ $$$$\:\frac{\mathrm{1}}{\left({a}\alpha^{\mathrm{2}} \:+\:{c}\right)^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\left({a}\beta^{\mathrm{2}} \:+\:{c}\right)^{\mathrm{2}} }\: \\ $$$$\:=\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left(\alpha^{\mathrm{2}} \:+\:\frac{{c}}{{a}}\right)^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left(\beta^{\mathrm{2}} \:+\:\frac{{c}}{{a}}\right)^{\mathrm{2}} }\: \\ $$$$\:=\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left(\alpha^{\mathrm{2}} \:+\:\alpha\beta\right)^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left(\beta^{\mathrm{2}} \:+\:\alpha\beta\right)^{\mathrm{2}} }\: \\ $$$$\:=\frac{\mathrm{1}}{{a}^{\mathrm{2}} \alpha^{\mathrm{2}} \left(\alpha\:+\:\beta\right)^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{{a}^{\mathrm{2}} \beta^{\mathrm{2}} \left(\beta\:+\:\alpha\right)^{\mathrm{2}} }\: \\ $$$$=\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left(\alpha+\beta\right)^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }+\frac{\mathrm{1}}{\beta^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left(\alpha+\beta\right)^{\mathrm{2}} }\centerdot\frac{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }{\left(\alpha\beta\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left(\alpha+\beta\right)^{\mathrm{2}} }\centerdot\frac{\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{2}\alpha\beta}{\left(\alpha\beta\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left(−\frac{{b}}{{a}}\right)^{\mathrm{2}} }\centerdot\frac{\left(−\frac{{b}}{{a}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{{c}}{{a}}\right)}{\left(\frac{{c}}{{a}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\centerdot\frac{\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{2}{c}}{{a}}}{\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\centerdot\frac{\frac{{b}^{\mathrm{2}} −\mathrm{2}{ac}}{{a}^{\mathrm{2}} }}{\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} }} \\ $$$$=\frac{{b}^{\mathrm{2}} −\mathrm{2}{ac}}{{b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$
Answered by A5T last updated on 22/Mar/24
$${a}\alpha^{\mathrm{2}} +{b}\alpha+{c}=\mathrm{0};\:{a}\beta^{\mathrm{2}} +{b}\beta+{c}=\mathrm{0} \\ $$$$\Rightarrow?=\frac{\mathrm{1}}{\left(−{b}\alpha\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(−{b}\beta\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{{b}^{\mathrm{2}} }\left(\frac{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }{\left(\alpha\beta\right)^{\mathrm{2}} }\right)=\frac{\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{\mathrm{2}{c}}{{a}}}{{b}^{\mathrm{2}} \left(\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)} \\ $$$$=\frac{{b}^{\mathrm{2}} −\mathrm{2}{ac}}{{b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$