Menu Close

If-the-roots-of-ax-2-bx-c-0-are-one-another-s-cube-then-show-that-b-2-2ac-2-ac-a-c-2-




Question Number 205527 by MATHEMATICSAM last updated on 23/Mar/24
If the roots of ax^2  + bx + c = 0 are one  another′s cube then show that  (b^2  − 2ac)^2  = ac(a + c)^2 .
Iftherootsofax2+bx+c=0areoneanotherscubethenshowthat(b22ac)2=ac(a+c)2.
Answered by A5T last updated on 23/Mar/24
Let the roots be α and β. Then, α=β^3  and β=α^3   α+β=α+α^3 =((−b)/a);αβ=α^4 =(c/a)⇒α=+_− ((c/a))^(1/4)   ⇒+_− ((c/a))^(1/4) +_− ((c^3 /a^3 ))^(1/4) =((−b)/a)⇒(√(c/a))+(√(c^3 /a^3 ))+((2c)/a)=(b^2 /a^2 )  ⇒(c/a)+(c^3 /a^3 )+((2c^2 )/a^2 )=(((b^2 −2ac)^2 )/a^4 )  ⇒a^3 c+ac^3 +2a^2 c^2 =ac(a+c)^2 =(b^2 −2ac)^2
Lettherootsbeαandβ.Then,α=β3andβ=α3α+β=α+α3=ba;αβ=α4=caα=+ca4+ca4+c3a34=baca+c3a3+2ca=b2a2ca+c3a3+2c2a2=(b22ac)2a4a3c+ac3+2a2c2=ac(a+c)2=(b22ac)2
Answered by Rasheed.Sindhi last updated on 24/Mar/24
AnOther Way  (b^2  − 2ac)^2  = ac(a + c)^2   ⇔(a^2 ((b^2 /a^2 ) − ((2ac)/a^2 )))^2  = ac(a((a/a) + (c/a)))^2   ⇔a^4 ((−(b/a))^2  −2( (c/a)))^2  = a^3 c(1 + (c/a))^2   ⇔((−(b/a))^2  −2( (c/a)))^2  = ((a^3 c)/a^4 )(1 + (c/a))^2   ⇔((−(b/a))^2  −2( (c/a)))^2  = (c/a)(1 + (c/a))^2   ⇔((α+β)^2  −2(αβ))^2  = αβ(1 + αβ)^2   ⇔(α^2 +β^2  )^2  = αβ(1+2αβ + α^2 β^2 )  ⇔α^4 +2α^2 β^2 +β^4   = αβ+2α^2 β^2  + α^3 β^3      α^3 =β ,β^3 =α⇒α^3 β^3 =αβ    α^4 =α∙α^3 =αβ , β^4 =β^3 ∙β=αβ  ⇔αβ+2α^2 β^2 +αβ  = αβ+2α^2 β^2  + αβ  ⇔2αβ+2α^2 β^2   =2 αβ+2α^2 β^2    Hence proved
AnOtherWay(b22ac)2=ac(a+c)2(a2(b2a22aca2))2=ac(a(aa+ca))2a4((ba)22(ca))2=a3c(1+ca)2((ba)22(ca))2=a3ca4(1+ca)2((ba)22(ca))2=ca(1+ca)2((α+β)22(αβ))2=αβ(1+αβ)2(α2+β2)2=αβ(1+2αβ+α2β2)α4+2α2β2+β4=αβ+2α2β2+α3β3α3=β,β3=αα3β3=αβα4=αα3=αβ,β4=β3β=αβαβ+2α2β2+αβ=αβ+2α2β2+αβ2αβ+2α2β2=2αβ+2α2β2Henceproved
Answered by Rasheed.Sindhi last updated on 24/Mar/24
Still another way  α+β=α+α^3 =−(b/a)⇒ determinant (((b=−aα^3 −aα)))  αβ=αα^3 =α^4 =(c/a)⇒ determinant (((c=aα^4 )))  (b^2  − 2ac)^2  = ac(a + c)^2   ⇒((−aα^3 −aα)^2  − 2a(aα^4 ))^2  = a(aα^4 )(a + aα^4 )^2   ⇒(a^2 (α^3 +α)^2  − 2a^2 α^4 ))^2  = a^2 (a^2 α^4 )(1 + α^4 )^2   ⇒a^4 ((α^6 +2α^4 +α^2 ) − 2α^4 ))^2  = (a^4 α^4 )(1 + α^4 )^2   ⇒a^4 ((α^6 +α^2 ) ))^2  = a^4 α^4 (1 + α^4 )^2   ⇒a^4 (α^(12) +2α^8 +α^4 = a^4 α^4 (1+2α^4  + α^8 )  ⇒a^4 (α^(12) +2α^8 +α^4 )= a^4 (α^4 +2α^8  + α^(12) )  Hence proved
Stillanotherwayα+β=α+α3=bab=aα3aααβ=αα3=α4=cac=aα4(b22ac)2=ac(a+c)2((aα3aα)22a(aα4))2=a(aα4)(a+aα4)2(a2(α3+α)22a2α4))2=a2(a2α4)(1+α4)2a4((α6+2α4+α2)2α4))2=(a4α4)(1+α4)2a4((α6+α2)))2=a4α4(1+α4)2a4(α12+2α8+α4=a4α4(1+2α4+α8)a4(α12+2α8+α4)=a4(α4+2α8+α12)Henceproved

Leave a Reply

Your email address will not be published. Required fields are marked *