Question Number 205527 by MATHEMATICSAM last updated on 23/Mar/24
$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{are}\:\mathrm{one} \\ $$$$\mathrm{another}'\mathrm{s}\:\mathrm{cube}\:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$$\left({b}^{\mathrm{2}} \:−\:\mathrm{2}{ac}\right)^{\mathrm{2}} \:=\:{ac}\left({a}\:+\:{c}\right)^{\mathrm{2}} . \\ $$
Answered by A5T last updated on 23/Mar/24
$${Let}\:{the}\:{roots}\:{be}\:\alpha\:{and}\:\beta.\:{Then},\:\alpha=\beta^{\mathrm{3}} \:{and}\:\beta=\alpha^{\mathrm{3}} \\ $$$$\alpha+\beta=\alpha+\alpha^{\mathrm{3}} =\frac{−{b}}{{a}};\alpha\beta=\alpha^{\mathrm{4}} =\frac{{c}}{{a}}\Rightarrow\alpha=\underset{−} {+}\sqrt[{\mathrm{4}}]{\frac{{c}}{{a}}} \\ $$$$\Rightarrow\underset{−} {+}\sqrt[{\mathrm{4}}]{\frac{{c}}{{a}}}\underset{−} {+}\sqrt[{\mathrm{4}}]{\frac{{c}^{\mathrm{3}} }{{a}^{\mathrm{3}} }}=\frac{−{b}}{{a}}\Rightarrow\sqrt{\frac{{c}}{{a}}}+\sqrt{\frac{{c}^{\mathrm{3}} }{{a}^{\mathrm{3}} }}+\frac{\mathrm{2}{c}}{{a}}=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{c}}{{a}}+\frac{{c}^{\mathrm{3}} }{{a}^{\mathrm{3}} }+\frac{\mathrm{2}{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} }=\frac{\left({b}^{\mathrm{2}} −\mathrm{2}{ac}\right)^{\mathrm{2}} }{{a}^{\mathrm{4}} } \\ $$$$\Rightarrow{a}^{\mathrm{3}} {c}+{ac}^{\mathrm{3}} +\mathrm{2}{a}^{\mathrm{2}} {c}^{\mathrm{2}} ={ac}\left({a}+{c}\right)^{\mathrm{2}} =\left({b}^{\mathrm{2}} −\mathrm{2}{ac}\right)^{\mathrm{2}} \\ $$
Answered by Rasheed.Sindhi last updated on 24/Mar/24
$$\mathrm{AnOther}\:\mathrm{Way} \\ $$$$\left({b}^{\mathrm{2}} \:−\:\mathrm{2}{ac}\right)^{\mathrm{2}} \:=\:{ac}\left({a}\:+\:{c}\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow\left({a}^{\mathrm{2}} \left(\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{2}{ac}}{{a}^{\mathrm{2}} }\right)\right)^{\mathrm{2}} \:=\:{ac}\left({a}\left(\frac{{a}}{{a}}\:+\:\frac{{c}}{{a}}\right)\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow{a}^{\mathrm{4}} \left(\left(−\frac{{b}}{{a}}\right)^{\mathrm{2}} \:−\mathrm{2}\left(\:\frac{{c}}{{a}}\right)\right)^{\mathrm{2}} \:=\:{a}^{\mathrm{3}} {c}\left(\mathrm{1}\:+\:\frac{{c}}{{a}}\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow\left(\left(−\frac{{b}}{{a}}\right)^{\mathrm{2}} \:−\mathrm{2}\left(\:\frac{{c}}{{a}}\right)\right)^{\mathrm{2}} \:=\:\frac{{a}^{\mathrm{3}} {c}}{{a}^{\mathrm{4}} }\left(\mathrm{1}\:+\:\frac{{c}}{{a}}\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow\left(\left(−\frac{{b}}{{a}}\right)^{\mathrm{2}} \:−\mathrm{2}\left(\:\frac{{c}}{{a}}\right)\right)^{\mathrm{2}} \:=\:\frac{{c}}{{a}}\left(\mathrm{1}\:+\:\frac{{c}}{{a}}\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow\left(\left(\alpha+\beta\right)^{\mathrm{2}} \:−\mathrm{2}\left(\alpha\beta\right)\right)^{\mathrm{2}} \:=\:\alpha\beta\left(\mathrm{1}\:+\:\alpha\beta\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \:\right)^{\mathrm{2}} \:=\:\alpha\beta\left(\mathrm{1}+\mathrm{2}\alpha\beta\:+\:\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \right) \\ $$$$\Leftrightarrow\alpha^{\mathrm{4}} +\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} +\beta^{\mathrm{4}} \:\:=\:\alpha\beta+\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \:+\:\alpha^{\mathrm{3}} \beta^{\mathrm{3}} \\ $$$$\:\:\:\alpha^{\mathrm{3}} =\beta\:,\beta^{\mathrm{3}} =\alpha\Rightarrow\alpha^{\mathrm{3}} \beta^{\mathrm{3}} =\alpha\beta \\ $$$$\:\:\alpha^{\mathrm{4}} =\alpha\centerdot\alpha^{\mathrm{3}} =\alpha\beta\:,\:\beta^{\mathrm{4}} =\beta^{\mathrm{3}} \centerdot\beta=\alpha\beta \\ $$$$\Leftrightarrow\alpha\beta+\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} +\alpha\beta\:\:=\:\alpha\beta+\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \:+\:\alpha\beta \\ $$$$\Leftrightarrow\mathrm{2}\alpha\beta+\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \:\:=\mathrm{2}\:\alpha\beta+\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \: \\ $$$$\mathcal{H}{ence}\:{proved} \\ $$
Answered by Rasheed.Sindhi last updated on 24/Mar/24
$$\mathrm{Still}\:\mathrm{another}\:\mathrm{way} \\ $$$$\alpha+\beta=\alpha+\alpha^{\mathrm{3}} =−\frac{{b}}{{a}}\Rightarrow\begin{array}{|c|}{{b}=−{a}\alpha^{\mathrm{3}} −{a}\alpha}\\\hline\end{array} \\ $$$$\alpha\beta=\alpha\alpha^{\mathrm{3}} =\alpha^{\mathrm{4}} =\frac{{c}}{{a}}\Rightarrow\begin{array}{|c|}{{c}={a}\alpha^{\mathrm{4}} }\\\hline\end{array} \\ $$$$\left({b}^{\mathrm{2}} \:−\:\mathrm{2}{ac}\right)^{\mathrm{2}} \:=\:{ac}\left({a}\:+\:{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\left(−{a}\alpha^{\mathrm{3}} −{a}\alpha\right)^{\mathrm{2}} \:−\:\mathrm{2}{a}\left({a}\alpha^{\mathrm{4}} \right)\right)^{\mathrm{2}} \:=\:{a}\left({a}\alpha^{\mathrm{4}} \right)\left({a}\:+\:{a}\alpha^{\mathrm{4}} \right)^{\mathrm{2}} \\ $$$$\left.\Rightarrow\left({a}^{\mathrm{2}} \left(\alpha^{\mathrm{3}} +\alpha\right)^{\mathrm{2}} \:−\:\mathrm{2}{a}^{\mathrm{2}} \alpha^{\mathrm{4}} \right)\right)^{\mathrm{2}} \:=\:{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} \alpha^{\mathrm{4}} \right)\left(\mathrm{1}\:+\:\alpha^{\mathrm{4}} \right)^{\mathrm{2}} \\ $$$$\left.\Rightarrow{a}^{\mathrm{4}} \left(\left(\alpha^{\mathrm{6}} +\mathrm{2}\alpha^{\mathrm{4}} +\alpha^{\mathrm{2}} \right)\:−\:\mathrm{2}\alpha^{\mathrm{4}} \right)\right)^{\mathrm{2}} \:=\:\left({a}^{\mathrm{4}} \alpha^{\mathrm{4}} \right)\left(\mathrm{1}\:+\:\alpha^{\mathrm{4}} \right)^{\mathrm{2}} \\ $$$$\left.\Rightarrow{a}^{\mathrm{4}} \left(\left(\alpha^{\mathrm{6}} +\alpha^{\mathrm{2}} \right)\:\right)\right)^{\mathrm{2}} \:=\:{a}^{\mathrm{4}} \alpha^{\mathrm{4}} \left(\mathrm{1}\:+\:\alpha^{\mathrm{4}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{4}} \left(\alpha^{\mathrm{12}} +\mathrm{2}\alpha^{\mathrm{8}} +\alpha^{\mathrm{4}} =\:{a}^{\mathrm{4}} \alpha^{\mathrm{4}} \left(\mathrm{1}+\mathrm{2}\alpha^{\mathrm{4}} \:+\:\alpha^{\mathrm{8}} \right)\right. \\ $$$$\Rightarrow{a}^{\mathrm{4}} \left(\alpha^{\mathrm{12}} +\mathrm{2}\alpha^{\mathrm{8}} +\alpha^{\mathrm{4}} \right)=\:{a}^{\mathrm{4}} \left(\alpha^{\mathrm{4}} +\mathrm{2}\alpha^{\mathrm{8}} \:+\:\alpha^{\mathrm{12}} \right) \\ $$$$\mathcal{H}{ence}\:{proved} \\ $$