If-the-roots-of-ax-2-bx-c-0-are-one-another-s-cube-then-show-that-b-2-2ac-2-ac-a-c-2- Tinku Tara March 23, 2024 Algebra 0 Comments FacebookTweetPin Question Number 205527 by MATHEMATICSAM last updated on 23/Mar/24 Iftherootsofax2+bx+c=0areoneanother′scubethenshowthat(b2−2ac)2=ac(a+c)2. Answered by A5T last updated on 23/Mar/24 Lettherootsbeαandβ.Then,α=β3andβ=α3α+β=α+α3=−ba;αβ=α4=ca⇒α=+−ca4⇒+−ca4+−c3a34=−ba⇒ca+c3a3+2ca=b2a2⇒ca+c3a3+2c2a2=(b2−2ac)2a4⇒a3c+ac3+2a2c2=ac(a+c)2=(b2−2ac)2 Answered by Rasheed.Sindhi last updated on 24/Mar/24 AnOtherWay(b2−2ac)2=ac(a+c)2⇔(a2(b2a2−2aca2))2=ac(a(aa+ca))2⇔a4((−ba)2−2(ca))2=a3c(1+ca)2⇔((−ba)2−2(ca))2=a3ca4(1+ca)2⇔((−ba)2−2(ca))2=ca(1+ca)2⇔((α+β)2−2(αβ))2=αβ(1+αβ)2⇔(α2+β2)2=αβ(1+2αβ+α2β2)⇔α4+2α2β2+β4=αβ+2α2β2+α3β3α3=β,β3=α⇒α3β3=αβα4=α⋅α3=αβ,β4=β3⋅β=αβ⇔αβ+2α2β2+αβ=αβ+2α2β2+αβ⇔2αβ+2α2β2=2αβ+2α2β2Henceproved Answered by Rasheed.Sindhi last updated on 24/Mar/24 Stillanotherwayα+β=α+α3=−ba⇒b=−aα3−aααβ=αα3=α4=ca⇒c=aα4(b2−2ac)2=ac(a+c)2⇒((−aα3−aα)2−2a(aα4))2=a(aα4)(a+aα4)2⇒(a2(α3+α)2−2a2α4))2=a2(a2α4)(1+α4)2⇒a4((α6+2α4+α2)−2α4))2=(a4α4)(1+α4)2⇒a4((α6+α2)))2=a4α4(1+α4)2⇒a4(α12+2α8+α4=a4α4(1+2α4+α8)⇒a4(α12+2α8+α4)=a4(α4+2α8+α12)Henceproved Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: h-1-2h-1-h-h-1-2h-1-1-pls-help-me-Next Next post: Question-205530 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.