Question Number 205507 by mr W last updated on 23/Mar/24
Commented by mr W last updated on 23/Mar/24
$${an}\:{unsolved}\:{old}\:{question} \\ $$
Answered by mr W last updated on 25/Mar/24
Commented by mr W last updated on 23/Mar/24
$${R}=\frac{\mathrm{85}+\mathrm{51}}{\mathrm{2}}=\mathrm{68} \\ $$$${r}_{\mathrm{1}} =\frac{\mathrm{51}}{\mathrm{2}}=\mathrm{25}.\mathrm{5} \\ $$$${R}+{d}={s}+\mathrm{2}{r}_{\mathrm{1}} \\ $$$$\Rightarrow{d}={s}−\mathrm{17} \\ $$$$\lambda=\frac{{R}^{\mathrm{2}} +{s}^{\mathrm{2}} −{d}^{\mathrm{2}} }{\mathrm{2}{Rs}}=\frac{\mathrm{68}^{\mathrm{2}} +{s}^{\mathrm{2}} −{d}^{\mathrm{2}} }{\mathrm{136}{s}}=\frac{\mathrm{68}^{\mathrm{2}} +{s}^{\mathrm{2}} −\left({s}−\mathrm{17}\right)^{\mathrm{2}} }{\mathrm{136}{s}}=\frac{\mathrm{34}{s}+\mathrm{4335}}{\mathrm{136}{s}} \\ $$$${for}\:\mathrm{6}\:{circles}\:{between}\:{the}\:{outer} \\ $$$${and}\:{the}\:{inner}\:{circles}\:{the}\:{inversive}\: \\ $$$${distance}\:{from}\:{them}\:{should}\:{be} \\ $$$$\delta=\mathrm{cosh}^{−\mathrm{1}} \lambda\:=\mathrm{2}\:\mathrm{ln}\:\left[\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{2}{n}}\right)\right] \\ $$$${with}\:{n}=\mathrm{6} \\ $$$$\mathrm{cosh}^{−\mathrm{1}} \:\lambda=\mathrm{2}\:\mathrm{ln}\:\left[\mathrm{tan}\:\left(\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{2}×\mathrm{6}}\right)\right] \\ $$$$\mathrm{cosh}^{−\mathrm{1}} \:\lambda=\mathrm{2}\:\mathrm{ln}\:\left(\mathrm{tan}\:\frac{\pi}{\mathrm{3}}\right) \\ $$$$\mathrm{cosh}^{−\mathrm{1}} \:\lambda=\mathrm{ln}\:\mathrm{3} \\ $$$$\mathrm{ln}\:\left(\lambda+\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}\right)=\mathrm{ln}\:\mathrm{3} \\ $$$$\lambda+\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}}=\mathrm{3} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{5}}{\mathrm{3}}=\frac{\mathrm{34}{s}+\mathrm{4335}}{\mathrm{136}{s}} \\ $$$$\Rightarrow{s}=\frac{\mathrm{45}}{\mathrm{2}}=\mathrm{22}.\mathrm{5} \\ $$$$\Rightarrow{d}=\mathrm{22}.\mathrm{5}−\mathrm{17}=\mathrm{5}.\mathrm{5} \\ $$$$\Rightarrow{r}_{\mathrm{4}} ={R}−{s}−{r}_{\mathrm{1}} =\mathrm{68}−\frac{\mathrm{51}}{\mathrm{2}}−\frac{\mathrm{45}}{\mathrm{2}}=\mathrm{20} \\ $$$$\frac{\left({s}+{r}_{\mathrm{2}} \right)^{\mathrm{2}} +\left({s}+{r}_{\mathrm{1}} \right)^{\mathrm{2}} −\left({r}_{\mathrm{1}} +{r}_{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{2}\left({s}+{r}_{\mathrm{2}} \right)\left({s}+{r}_{\mathrm{1}} \right)}=\frac{\left({s}+{r}_{\mathrm{2}} \right)^{\mathrm{2}} +{d}^{\mathrm{2}} −\left({R}−{r}_{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{2}\left({s}+{r}_{\mathrm{2}} \right){d}} \\ $$$$\frac{{s}^{\mathrm{2}} +{sr}_{\mathrm{1}} +\left({s}−{r}_{\mathrm{1}} \right){r}_{\mathrm{2}} }{{s}+{r}_{\mathrm{1}} }=\frac{{s}^{\mathrm{2}} +\mathrm{2}\left({R}+{s}\right){r}_{\mathrm{2}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }{\mathrm{2}{d}} \\ $$$$\frac{\left(\frac{\mathrm{45}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{45}}{\mathrm{2}}×\frac{\mathrm{51}}{\mathrm{2}}+\left(\frac{\mathrm{45}}{\mathrm{2}}−\frac{\mathrm{51}}{\mathrm{2}}\right){r}_{\mathrm{2}} }{\frac{\mathrm{45}}{\mathrm{2}}+\frac{\mathrm{51}}{\mathrm{2}}}=\frac{\left(\frac{\mathrm{45}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{68}+\frac{\mathrm{45}}{\mathrm{2}}\right){r}_{\mathrm{2}} +\left(\frac{\mathrm{11}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{68}^{\mathrm{2}} }{\mathrm{2}×\frac{\mathrm{11}}{\mathrm{2}}} \\ $$$$\Rightarrow{r}_{\mathrm{2}} =\frac{\mathrm{1360}}{\mathrm{57}}\approx\mathrm{23}.\mathrm{859649} \\ $$$${similarly} \\ $$$$\frac{\mathrm{2}{s}^{\mathrm{2}} +\mathrm{2}{sr}_{\mathrm{4}} +\mathrm{2}\left({s}−{r}_{\mathrm{4}} \right){r}_{\mathrm{3}} }{{s}+{r}_{\mathrm{4}} }=\frac{{s}^{\mathrm{2}} +\mathrm{2}\left({R}+{s}\right){r}_{\mathrm{3}} +{d}^{\mathrm{2}} −{R}^{\mathrm{2}} }{−{d}} \\ $$$$\frac{\left(\frac{\mathrm{45}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{45}}{\mathrm{2}}×\mathrm{20}+\left(\frac{\mathrm{45}}{\mathrm{2}}−\mathrm{20}\right){r}_{\mathrm{3}} }{\frac{\mathrm{45}}{\mathrm{2}}+\mathrm{20}}=\frac{\left(\frac{\mathrm{45}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{68}+\frac{\mathrm{45}}{\mathrm{2}}\right){r}_{\mathrm{3}} +\left(\frac{\mathrm{11}}{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{68}^{\mathrm{2}} }{−\mathrm{2}×\frac{\mathrm{11}}{\mathrm{2}}} \\ $$$$\Rightarrow{r}_{\mathrm{3}} =\frac{\mathrm{4080}}{\mathrm{193}}\approx\mathrm{21}.\mathrm{139}\:\mathrm{896} \\ $$$${c}={r}_{\mathrm{2}} +{r}_{\mathrm{3}} =\frac{\mathrm{1360}}{\mathrm{57}}+\frac{\mathrm{4080}}{\mathrm{193}}=\frac{\mathrm{495040}}{\mathrm{11001}}\approx\mathrm{44}.\mathrm{999}\:\mathrm{545}\:\mathrm{496} \\ $$
Commented by mr W last updated on 23/Mar/24