Menu Close

0-pi-2-sin-2-4-sin-2-d-




Question Number 205558 by universe last updated on 24/Mar/24
    ∫_0 ^(π/2)  ((sin^2 4θ )/(sin^2 θ ))dθ  =   ?
0π/2sin24θsin2θdθ=?
Answered by Berbere last updated on 24/Mar/24
sin^2 (4x)=4sin^2 (2x)cos^2 (2x)  =16sin^2 (x)cos^2 (x)cos^2 (2x)  ∫_0 ^(π/2) 8cos^2 (x)cos^2 (2x)=∫_0 ^(π/2) 4(cos(2x)+1)(cos(4x)+1)dx  =∫_0 ^(π/2) 4cos(2x)cos(4x)+4cis(2x)+4cos(4x)+4 dx  =∫_0 ^(π/2) 6cos(2x)+2cos(6x)+4cos(4x)+4dx  =2π
sin2(4x)=4sin2(2x)cos2(2x)=16sin2(x)cos2(x)cos2(2x)0π28cos2(x)cos2(2x)=0π24(cos(2x)+1)(cos(4x)+1)dx=0π24cos(2x)cos(4x)+4cis(2x)+4cos(4x)+4dx=0π26cos(2x)+2cos(6x)+4cos(4x)+4dx=2π
Commented by Frix last updated on 24/Mar/24
((sin^2  4x)/(sin^2  x))=2cos 6x +4cos 4x +6cos 2x +4  ⇒  ∫_0 ^(π/2) ((sin^2  4x)/(sin^2  x))dx=  =[(1/3)sin 6x +sin 4x +3sin 2x +4x]_0 ^(π/2) =2π
sin24xsin2x=2cos6x+4cos4x+6cos2x+4π20sin24xsin2xdx==[13sin6x+sin4x+3sin2x+4x]0π2=2π

Leave a Reply

Your email address will not be published. Required fields are marked *