Menu Close

Question-205562




Question Number 205562 by mr W last updated on 24/Mar/24
Answered by A5T last updated on 24/Mar/24
Commented by A5T last updated on 24/Mar/24
CE=(√(2r^2 (1−cosθ)))=(√(2x^2 (1+cosθ)))  θ=2×30°=60°⇒(√(2r^2 ×(1/2)))=(√(2x^2 ×(3/2)))  ⇒r=x(√3)⇒tanα=(x/r)=(1/( (√3)))⇒α=30°
$${CE}=\sqrt{\mathrm{2}{r}^{\mathrm{2}} \left(\mathrm{1}−{cos}\theta\right)}=\sqrt{\mathrm{2}{x}^{\mathrm{2}} \left(\mathrm{1}+{cos}\theta\right)} \\ $$$$\theta=\mathrm{2}×\mathrm{30}°=\mathrm{60}°\Rightarrow\sqrt{\mathrm{2}{r}^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{2}}}=\sqrt{\mathrm{2}{x}^{\mathrm{2}} ×\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\Rightarrow{r}={x}\sqrt{\mathrm{3}}\Rightarrow{tan}\alpha=\frac{{x}}{{r}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\Rightarrow\alpha=\mathrm{30}° \\ $$
Commented by mr W last updated on 26/Mar/24
��
Answered by mr W last updated on 26/Mar/24
Commented by mr W last updated on 26/Mar/24
2α=2×30°  ⇒α=30°
$$\mathrm{2}\alpha=\mathrm{2}×\mathrm{30}° \\ $$$$\Rightarrow\alpha=\mathrm{30}° \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *