Menu Close

Question-math-analysis-X-d-is-a-metric-space-and-p-n-n-1-is-a-sequence-in-X-p-n-n-1-is-cauchy-if-and-only-if-lim-N-diam-E-N-0-where-E-N-p-N-




Question Number 205559 by mnjuly1970 last updated on 24/Mar/24
     Question. (math analysis)    (X ,d ) is a metric space and    (p_n )_(n=1) ^∞  is a sequence in X.     (p_n )_(n=1) ^( ∞) is cauchy if and  only if     lim_(N→∞) diam (E_N )=0.    where , E_N  = { p_N  , p_(N+1)  , ...}    diam E:=sup{d(x,y)∣x,y ∈E }
Question.(mathanalysis)(X,d)isametricspaceand(pn)n=1isasequenceinX.(pn)n=1iscauchyifandonlyiflimNdiam(EN)=0.where,EN={pN,pN+1,}diamE:=sup{d(x,y)x,yE}
Answered by Berbere last updated on 24/Mar/24
dim(E)=sup d(x_i ,x_j );(x_i ,x_j )∈E^2   Let p_(n )  a cauchy sequence⇒∀ε>0 ∃N∈N ∣∀k,m≥0  d(P_(N+k) ,P_(N+m) )≤ε......1  E_N {P_N ,P_(N+1) ,.......};let S_N =sup (d(x,y)∣(x,y)∈E_N ^2 )  S_N ∈R since  P_N  is cauchy Sequence ∃a>0 ⇒d(P_k ,P_l )<a  ∀(k,l)∈N^2   if N_1 >N_2 ⇒E_N_2  ⊂E_N_1  ⇒S_N_2  <S_N_1    S_(N )  decrease biunded Sequence  ⇒Diam(E_N ) Cv  1...⇒∀ε≥0    ∃N ∈N ∣ diam(E_N )<ε  lim_(N→∞)  diam(E_N )=a∈R_+   a<diam(E_N )  (E_N  decrease)⇒∀ε>0 0≤ a<ε  ∀n>0  0≤a≤(1/n)⇒a∈∩^(n∈N^∗ ) [0,(1/n)]={0}  ⇒lim_(n→∞)  diam(E_N )=0
dim(E)=supd(xi,xj);(xi,xj)E2Letpnacauchysequenceϵ>0NNk,m0d(PN+k,PN+m)ϵ1EN{PN,PN+1,.};letSN=sup(d(x,y)(x,y)EN2)SNRsincePNiscauchySequencea>0d(Pk,Pl)<a(k,l)N2ifN1>N2EN2EN1SN2<SN1SNdecreasebiundedSequenceDiam(EN)Cv1ϵ0NNdiam(EN)<ϵlimNdiam(EN)=aR+a<diam(EN)(ENdecrease)ϵ>00a<ϵn>00a1nanN[0,1n]={0}limndiam(EN)=0
Commented by mnjuly1970 last updated on 24/Mar/24
thanks alot sir ...
thanksalotsir
Commented by Berbere last updated on 24/Mar/24
Withe Pleasur
WithePleasur
Answered by aleks041103 last updated on 04/Apr/24
Let a_N =diam({p_k }_(k=N) ^∞ ).  We are asked to prove  {p_k }_(k=1) ^∞  is Cauchy ⇔ lim_(N→∞)  a_N  = 0    1. Cauchy ⇒ a_N →0  Cauchy ⇒ ∀ε>0,∃M:d(p_m ,p_n )<ε/2, ∀m,n>M  ⇒a_M =diam({p_k }_(k=M+1) ^∞ )=sup{d(p_m ,p_n )∣m,n>M}≤ε/2<ε  it is easy to see that a_n >0 is decreasing  ⇒∀m≥M, 0<a_m ≤a_M <ε, i.e. ∣a_m ∣<ε  ⇒∀ε>0,∃M:∣a_m −0∣<ε, ∀m>M  ⇒lim_(N→∞)  a_N =0    2.a_n → 0 ⇒ Cauchy  a_N → 0 (a_N >0)⇒ ∀ε>0, ∃M: a_N <ε, ∀N≥M  ⇒a_M =sup_(m,n≥M)  d(p_m ,p_n ) < ε  ⇒d(p_m ,p_n )<ε, ∀m,n>M  ⇒∀ε>0,∃M:d(p_m ,p_n )<ε, ∀m,n>M  ⇒Cauchy
LetaN=diam({pk}k=N).Weareaskedtoprove{pk}k=1isCauchylimNaN=01.CauchyaN0Cauchyϵ>0,M:d(pm,pn)<ϵ/2,m,n>MaM=diam({pk}k=M+1)=sup{d(pm,pn)m,n>M}ϵ/2<ϵitiseasytoseethatan>0isdecreasingmM,0<amaM<ϵ,i.e.am∣<ϵϵ>0,M:∣am0∣<ϵ,m>MlimNaN=02.an0CauchyaN0(aN>0)ϵ>0,M:aN<ϵ,NMaM=supm,nMd(pm,pn)<ϵd(pm,pn)<ϵ,m,n>Mϵ>0,M:d(pm,pn)<ϵ,m,n>MCauchy

Leave a Reply

Your email address will not be published. Required fields are marked *