Question Number 205559 by mnjuly1970 last updated on 24/Mar/24

Answered by Berbere last updated on 24/Mar/24
![dim(E)=sup d(x_i ,x_j );(x_i ,x_j )∈E^2 Let p_(n ) a cauchy sequence⇒∀ε>0 ∃N∈N ∣∀k,m≥0 d(P_(N+k) ,P_(N+m) )≤ε......1 E_N {P_N ,P_(N+1) ,.......};let S_N =sup (d(x,y)∣(x,y)∈E_N ^2 ) S_N ∈R since P_N is cauchy Sequence ∃a>0 ⇒d(P_k ,P_l )<a ∀(k,l)∈N^2 if N_1 >N_2 ⇒E_N_2 ⊂E_N_1 ⇒S_N_2 <S_N_1 S_(N ) decrease biunded Sequence ⇒Diam(E_N ) Cv 1...⇒∀ε≥0 ∃N ∈N ∣ diam(E_N )<ε lim_(N→∞) diam(E_N )=a∈R_+ a<diam(E_N ) (E_N decrease)⇒∀ε>0 0≤ a<ε ∀n>0 0≤a≤(1/n)⇒a∈∩^(n∈N^∗ ) [0,(1/n)]={0} ⇒lim_(n→∞) diam(E_N )=0](https://www.tinkutara.com/question/Q205563.png)
Commented by mnjuly1970 last updated on 24/Mar/24

Commented by Berbere last updated on 24/Mar/24

Answered by aleks041103 last updated on 04/Apr/24
