Menu Close

Givem-that-the-matrix-A-3-1-5-2-3-5-5-1-6-If-Adj-A-13-1-10-13-7-5-13-2-7-i-find-A-1-ii-Use-the-result-in-i-to-find-the-values-of-x-y-and-z-that




Question Number 205586 by necx122 last updated on 25/Mar/24
Givem that the matrix A =  ((3,1,5),(2,3,5),(5,1,6) ).   If Adj. A =  (((13),(-1),(-10)),((13),(-7),(-5)),((-13),2,7) )  (i) find A^(−1)   (ii) Use the result in (i) to find the  values of x, y and z that will satisfy the  equations:  3x + y + 5z = 8  2x +3y + 5z = 0  5x + y + 6z = 13
$${Givem}\:{that}\:{the}\:{matrix}\:{A}\:=\:\begin{pmatrix}{\mathrm{3}}&{\mathrm{1}}&{\mathrm{5}}\\{\mathrm{2}}&{\mathrm{3}}&{\mathrm{5}}\\{\mathrm{5}}&{\mathrm{1}}&{\mathrm{6}}\end{pmatrix}.\: \\ $$$${If}\:{Adj}.\:{A}\:=\:\begin{pmatrix}{\mathrm{13}}&{-\mathrm{1}}&{-\mathrm{10}}\\{\mathrm{13}}&{-\mathrm{7}}&{-\mathrm{5}}\\{-\mathrm{13}}&{\mathrm{2}}&{\mathrm{7}}\end{pmatrix} \\ $$$$\left({i}\right)\:{find}\:{A}^{−\mathrm{1}} \\ $$$$\left({ii}\right)\:{Use}\:{the}\:{result}\:{in}\:\left({i}\right)\:{to}\:{find}\:{the} \\ $$$${values}\:{of}\:{x},\:{y}\:{and}\:{z}\:{that}\:{will}\:{satisfy}\:{the} \\ $$$${equations}: \\ $$$$\mathrm{3}{x}\:+\:{y}\:+\:\mathrm{5}{z}\:=\:\mathrm{8} \\ $$$$\mathrm{2}{x}\:+\mathrm{3}{y}\:+\:\mathrm{5}{z}\:=\:\mathrm{0} \\ $$$$\mathrm{5}{x}\:+\:{y}\:+\:\mathrm{6}{z}\:=\:\mathrm{13} \\ $$
Answered by som(math1967) last updated on 25/Mar/24
 A^(−1) =(1/(∣A∣))×Adj.A  ∣A∣=3(18−5)−1(12−25)+5(2−15)  =39+13−65  =13(3+1−5)=−13  ∴A^(−1) = (((−1),(1/(13)),((10)/(13))),((−1),(7/(13)),(5/(13))),(1,((−2)/(13)),((−7)/(13))) )   equation    A×X=B  where=A= ((3,1,5),(2,3,5),(5,1,6) )  X= ((x),(y),(z) )   B= ((8),(0),((13)) )  A^(−1) ×A×X=A^(−1) ×B   I×X= (((−8+0+10)),((−8+0+5)),((8+0−7)) )   ((x),(y),(z) )  = ((2),((−3)),(1) )  ∴x= 2, y=−3 ,z=1 ans
$$\:{A}^{−\mathrm{1}} =\frac{\mathrm{1}}{\mid{A}\mid}×{Adj}.{A} \\ $$$$\mid{A}\mid=\mathrm{3}\left(\mathrm{18}−\mathrm{5}\right)−\mathrm{1}\left(\mathrm{12}−\mathrm{25}\right)+\mathrm{5}\left(\mathrm{2}−\mathrm{15}\right) \\ $$$$=\mathrm{39}+\mathrm{13}−\mathrm{65} \\ $$$$=\mathrm{13}\left(\mathrm{3}+\mathrm{1}−\mathrm{5}\right)=−\mathrm{13} \\ $$$$\therefore{A}^{−\mathrm{1}} =\begin{pmatrix}{−\mathrm{1}}&{\frac{\mathrm{1}}{\mathrm{13}}}&{\frac{\mathrm{10}}{\mathrm{13}}}\\{−\mathrm{1}}&{\frac{\mathrm{7}}{\mathrm{13}}}&{\frac{\mathrm{5}}{\mathrm{13}}}\\{\mathrm{1}}&{\frac{−\mathrm{2}}{\mathrm{13}}}&{\frac{−\mathrm{7}}{\mathrm{13}}}\end{pmatrix} \\ $$$$\:{equation} \\ $$$$\:\:{A}×{X}={B} \\ $$$${where}={A}=\begin{pmatrix}{\mathrm{3}}&{\mathrm{1}}&{\mathrm{5}}\\{\mathrm{2}}&{\mathrm{3}}&{\mathrm{5}}\\{\mathrm{5}}&{\mathrm{1}}&{\mathrm{6}}\end{pmatrix} \\ $$$${X}=\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}\:\:\:{B}=\begin{pmatrix}{\mathrm{8}}\\{\mathrm{0}}\\{\mathrm{13}}\end{pmatrix} \\ $$$${A}^{−\mathrm{1}} ×{A}×{X}={A}^{−\mathrm{1}} ×{B} \\ $$$$\:{I}×{X}=\begin{pmatrix}{−\mathrm{8}+\mathrm{0}+\mathrm{10}}\\{−\mathrm{8}+\mathrm{0}+\mathrm{5}}\\{\mathrm{8}+\mathrm{0}−\mathrm{7}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}\:\:=\begin{pmatrix}{\mathrm{2}}\\{−\mathrm{3}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\therefore{x}=\:\mathrm{2},\:{y}=−\mathrm{3}\:,{z}=\mathrm{1}\:{ans} \\ $$
Commented by necx122 last updated on 25/Mar/24
This is so clear and expressive. Thank you  so much sir.
$${This}\:{is}\:{so}\:{clear}\:{and}\:{expressive}.\:{Thank}\:{you} \\ $$$${so}\:{much}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *