Menu Close

laplace-transform-L-sin-t-




Question Number 205599 by mnjuly1970 last updated on 25/Mar/24
   laplace transform...             L {  sin((√t) )} =?  −−−−
laplacetransformL{sin(t)}=?
Commented by SANOGO last updated on 25/Mar/24
merci beaucoup
mercibeaucoup
Answered by Berbere last updated on 25/Mar/24
L{sin((√t))}(x)=∫_0 ^∞ sin((√t))e^(−xt) dt;x>0  (√t)=y  =∫_0 ^∞ sin(y)e^(−xy^2 ) 2ydy=^(IBP) [−(e^(−xy^2 ) /x)sin(y)]_0 ^∞ +(1/x)∫_0 ^∞ cos(y)e^(−xy^2 ) dy  =(1/x)Re∫_0 ^∞ e^(−xy^2 +iy) dy=(1/x)Re∫_0 ^∞ e^(−(y(√x)+(i/(2(√x))))^2 −(1/(4x))) dy  y(√x).=u,(e^(−(1/(4x))) /(x(√x)))Re∫_0 ^∞ e^(−(u+(i/(2(√x))))^2 ) du  X=u+(i/(2(√x)));(e^(−(1/(4x))) /(x(√x)))Re∫_(0+(i/(2(√x)))) ^(∞+(i/(2(√x)))) e^(−X^2 ) dX;  let rectangle ofDq (0,0) (0,(i/(2(√x))));(∞,(i/(2(√x))));(∞,0)  f(z)=e^(−z^2 )   ∫_D f(z)dz=0  Holomorphic function cauchy Theorem  ∫_0 ^(i/(2(√x))) f(z)dz+∫_(i/(2(√x))) ^(∞+(i/(2(√x)))) f(z)dz+∫_(∞+(i/(2(√x)))) ^∞ f(z)dz_(=0) +∫_∞ ^0 f(z)dz=0  z=x+iy  ∣f(z)∣≤e^(−y^2 ) .e^(−x^2 ) →0 x→∞  ∫_0 ^∞ e^(−z^2 ) =(1/2)Γ((1/2))=((√π)/2);∫_0 ^(i/(2(√x))) e^(−z^2 ) dz;z=it  =i∫_0 ^(1/(2(√x))) e^t^2  dt imaginair Pur  Re∫_(0+(i/(2(√x)))) ^(∞+(i/(2(√x)))) e^(−X^2 ) =((√π)/2)  L(sin((√t))(x)=(e^(−(1/(4x))) /(x(√x))).((√π)/2)
L{sin(t)}(x)=0sin(t)extdt;x>0t=y=0sin(y)exy22ydy=IBP[exy2xsin(y)]0+1x0cos(y)exy2dy=1xRe0exy2+iydy=1xRe0e(yx+i2x)214xdyyx.=u,e14xxxRe0e(u+i2x)2duX=u+i2x;e14xxxRe0+i2x+i2xeX2dX;letrectangleofDq(0,0)(0,i2x);(,i2x);(,0)f(z)=ez2Df(z)dz=0HolomorphicfunctioncauchyTheorem0i2xf(z)dz+i2x+i2xf(z)dz++i2xf(z)dz=0+0f(z)dz=0z=x+iyf(z)∣⩽ey2.ex20x0ez2=12Γ(12)=π2;0i2xez2dz;z=it=i012xet2dtimaginairPurRe0+i2x+i2xeX2=π2L(sin(t)(x)=e14xxx.π2
Commented by mnjuly1970 last updated on 25/Mar/24
thanks alot  Master
thanksalotMaster
Commented by Berbere last updated on 27/Mar/24
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *