Question Number 205599 by mnjuly1970 last updated on 25/Mar/24

Commented by SANOGO last updated on 25/Mar/24

Answered by Berbere last updated on 25/Mar/24
![L{sin((√t))}(x)=∫_0 ^∞ sin((√t))e^(−xt) dt;x>0 (√t)=y =∫_0 ^∞ sin(y)e^(−xy^2 ) 2ydy=^(IBP) [−(e^(−xy^2 ) /x)sin(y)]_0 ^∞ +(1/x)∫_0 ^∞ cos(y)e^(−xy^2 ) dy =(1/x)Re∫_0 ^∞ e^(−xy^2 +iy) dy=(1/x)Re∫_0 ^∞ e^(−(y(√x)+(i/(2(√x))))^2 −(1/(4x))) dy y(√x).=u,(e^(−(1/(4x))) /(x(√x)))Re∫_0 ^∞ e^(−(u+(i/(2(√x))))^2 ) du X=u+(i/(2(√x)));(e^(−(1/(4x))) /(x(√x)))Re∫_(0+(i/(2(√x)))) ^(∞+(i/(2(√x)))) e^(−X^2 ) dX; let rectangle ofDq (0,0) (0,(i/(2(√x))));(∞,(i/(2(√x))));(∞,0) f(z)=e^(−z^2 ) ∫_D f(z)dz=0 Holomorphic function cauchy Theorem ∫_0 ^(i/(2(√x))) f(z)dz+∫_(i/(2(√x))) ^(∞+(i/(2(√x)))) f(z)dz+∫_(∞+(i/(2(√x)))) ^∞ f(z)dz_(=0) +∫_∞ ^0 f(z)dz=0 z=x+iy ∣f(z)∣≤e^(−y^2 ) .e^(−x^2 ) →0 x→∞ ∫_0 ^∞ e^(−z^2 ) =(1/2)Γ((1/2))=((√π)/2);∫_0 ^(i/(2(√x))) e^(−z^2 ) dz;z=it =i∫_0 ^(1/(2(√x))) e^t^2 dt imaginair Pur Re∫_(0+(i/(2(√x)))) ^(∞+(i/(2(√x)))) e^(−X^2 ) =((√π)/2) L(sin((√t))(x)=(e^(−(1/(4x))) /(x(√x))).((√π)/2)](https://www.tinkutara.com/question/Q205601.png)
Commented by mnjuly1970 last updated on 25/Mar/24

Commented by Berbere last updated on 27/Mar/24
