Menu Close

If-a-b-c-gt-0-and-a-2-b-2-c-2-abc-Prove-that-a-a-2-bc-b-b-2-ac-c-c-2-ab-1-2-




Question Number 205643 by hardmath last updated on 26/Mar/24
If  a,b,c>0  and  a^2  + b^2  + c^2  = abc  Prove that:  (a/(a^2  + bc)) + (b/(b^2  + ac)) + (c/(c^2  + ab)) ≤ (1/2)
Ifa,b,c>0anda2+b2+c2=abcProvethat:aa2+bc+bb2+ac+cc2+ab12
Answered by A5T last updated on 29/Mar/24
Σ(a/(a^2 +bc))≤(√(a^2 +b^2 +c^2 ))(√(Σ(1/((a^2 +bc)^2 ))))  ≤(√(abc))×(1/(2(√(abc))))((√((1/a)+(1/b)+(1/c))))≤(1/2)((√((ab+bc+ca)/(abc))))  =(1/2)(√((ab+bc+ca)/(a^2 +b^2 +c^2 )))≤(1/2)
Σaa2+bca2+b2+c2Σ1(a2+bc)2abc×12abc(1a+1b+1c)12(ab+bc+caabc)=12ab+bc+caa2+b2+c212

Leave a Reply

Your email address will not be published. Required fields are marked *