Menu Close

Question-205685




Question Number 205685 by MathedUp last updated on 27/Mar/24
Answered by TonyCWX08 last updated on 27/Mar/24
(1/(10))g
$$\frac{\mathrm{1}}{\mathrm{10}}{g} \\ $$
Commented by MathedUp last updated on 27/Mar/24
pls share the solution process
$$\mathrm{pls}\:\mathrm{share}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{process} \\ $$
Answered by mr W last updated on 27/Mar/24
Commented by mr W last updated on 27/Mar/24
m_B =mass of object B  decrease of potential energy of B is  m_B gh  increase of kinetic energy of B is  ((m_B (v_2 ^2 −v_1 ^2 ))/2)  it is given:  m_B gh=10×((m_B (v_2 ^2 −v_1 ^2 ))/2)  ⇒gh=5(v_2 ^2 −v_1 ^2 )  on the other side v_2 ^2 −v_1 ^2 =2ah  ⇒gh=5×2ah   ⇒a=(g/(10))=B′s acceleration  A and B have the same acceleration,  ⇒A′s acceleration is a=(g/(10))
$${m}_{{B}} ={mass}\:{of}\:{object}\:{B} \\ $$$${decrease}\:{of}\:{potential}\:{energy}\:{of}\:{B}\:{is} \\ $$$${m}_{{B}} {gh} \\ $$$${increase}\:{of}\:{kinetic}\:{energy}\:{of}\:{B}\:{is} \\ $$$$\frac{{m}_{{B}} \left({v}_{\mathrm{2}} ^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} \right)}{\mathrm{2}} \\ $$$${it}\:{is}\:{given}: \\ $$$${m}_{{B}} {gh}=\mathrm{10}×\frac{{m}_{{B}} \left({v}_{\mathrm{2}} ^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} \right)}{\mathrm{2}} \\ $$$$\Rightarrow{gh}=\mathrm{5}\left({v}_{\mathrm{2}} ^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} \right) \\ $$$${on}\:{the}\:{other}\:{side}\:{v}_{\mathrm{2}} ^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} =\mathrm{2}{ah} \\ $$$$\Rightarrow{gh}=\mathrm{5}×\mathrm{2}{ah}\: \\ $$$$\Rightarrow{a}=\frac{{g}}{\mathrm{10}}={B}'{s}\:{acceleration} \\ $$$${A}\:{and}\:{B}\:{have}\:{the}\:{same}\:{acceleration}, \\ $$$$\Rightarrow{A}'{s}\:{acceleration}\:{is}\:{a}=\frac{{g}}{\mathrm{10}} \\ $$
Commented by MathedUp last updated on 27/Mar/24
thx!
$${thx}! \\ $$
Commented by TonyCWX08 last updated on 28/Mar/24
MathedUp  I believe you will say so if you look carefully on his profile picture.
$${MathedUp} \\ $$$${I}\:{believe}\:{you}\:{will}\:{say}\:{so}\:{if}\:{you}\:{look}\:{carefully}\:{on}\:{his}\:{profile}\:{picture}. \\ $$
Commented by TonyCWX08 last updated on 28/Mar/24
By the way, please change your profile.  Thanks.
$${By}\:{the}\:{way},\:{please}\:{change}\:{your}\:{profile}. \\ $$$${Thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *