Menu Close

If-a-b-c-R-and-a-b-c-6-Prove-that-a-2-4-4a-2-9a-6-b-2-4-4b-2-9b-6-c-2-4-4c-2-9c-6-0-




Question Number 205733 by hardmath last updated on 28/Mar/24
If  a,b,c∈R^+   and  a+b+c=6  Prove that:  ((a^2 −4)/(4a^2 −9a + 6)) + ((b^2 −4)/(4b^2 −9b + 6)) + ((c^2 −4)/(4c^2 −9c + 6)) ≤ 0
Ifa,b,cR+anda+b+c=6Provethat:a244a29a+6+b244b29b+6+c244c29c+60
Answered by A5T last updated on 29/Mar/24
4a^2 +16≥2(√(4×16a^2 ))=16a  ⇒4a^2 +16−9a−10≥7a−10  ((a^2 −4=(a/7)(7a−10)+((10a)/7)−4)/(7a−10))=(a/7)+(((10a−28)/7)/(7a−10))  Question⇔Σ((a/7)+((10a−28)/(49a−70)))≤0  ⇔Σ((10a−28)/(49a−70))≤((−6)/7)⇔((10)/(49))×3−Σ((10a−28)/(49a−70))≥((72)/(49))  ⇔Σ(((672)/(343(7a−10))))≥((72)/(49))⇔((672)/(343))(Σ(1/((7a−10))))≥((72)/(49))  ⇔^? Σ(1/(7a−10))≥((72×343)/(49×672))=(3/4)  (1/(7a−10))+(1/(7b−10))+(1/(7c−10))≥(9/(7(a+b+c)−30))=(9/(12))=(3/4)  Since Σ(1/(7a−10))≥(3/4) as shown above,then original  ineauality must be true[Equality when a=b=c=2]
4a2+1624×16a2=16a4a2+169a107a10a24=a7(7a10)+10a747a10=a7+10a2877a10QuestionΣ(a7+10a2849a70)0Σ10a2849a70671049×3Σ10a2849a707249Σ(672343(7a10))7249672343(Σ1(7a10))7249?Σ17a1072×34349×672=3417a10+17b10+17c1097(a+b+c)30=912=34SinceΣ17a1034asshownabove,thenoriginalineaualitymustbetrue[Equalitywhena=b=c=2]

Leave a Reply

Your email address will not be published. Required fields are marked *