Question Number 205716 by universe last updated on 28/Mar/24
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)…\left(\mathrm{4}{n}+\mathrm{1}\right)}{\left(\mathrm{2}{n}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)…\left(\mathrm{4}{n}\right)}\:\:=\:\:? \\ $$
Answered by MM42 last updated on 28/Mar/24
$$\frac{\left(\mathrm{2}{n}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)…\left(\mathrm{4}{n}\right)}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)…\left(\mathrm{4}{n}−\mathrm{1}\right)}<{A}<\frac{\left(\mathrm{2}{n}+\mathrm{2}\right)\left(\mathrm{2}{n}+\mathrm{4}\right)…\left(\mathrm{4}{n}+\mathrm{2}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)…\left(\mathrm{4}{n}+\mathrm{1}\right)} \\ $$$$\Rightarrow\frac{\mathrm{4}{n}+\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right){A}}<{A}<\frac{\mathrm{4}{n}+\mathrm{2}}{\left(\mathrm{2}{n}\right){A}} \\ $$$$\Rightarrow\frac{\mathrm{4}{n}+\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}<{A}^{\mathrm{2}} <\frac{\mathrm{4}{n}+\mathrm{2}}{\mathrm{2}{n}} \\ $$$$\Rightarrow{lim}_{{n}\rightarrow\infty} {A}^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow{lim}_{{n}\rightarrow\infty} {A}=\sqrt{\mathrm{2}}\:\:\:\checkmark\: \\ $$$$ \\ $$
Answered by Berbere last updated on 28/Mar/24
$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}\frac{\left(\mathrm{2}{n}+\mathrm{2}{k}+\mathrm{1}\right)}{\left(\mathrm{2}{n}+\mathrm{2}{k}\right)}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{U}_{{n}} \\ $$$${U}_{{n}} ={e}^{\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{ln}\left(\frac{\mathrm{2}{k}+\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{2}{k}}\right)} ={e}^{\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{2}{k}}\right)} ={e}^{{V}_{{n}} } \\ $$$$\forall{x}\in\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$$${x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x}; \\ $$$${proof}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\leqslant\mathrm{1}\:\Rightarrow\mathrm{1}−{x}\leqslant\frac{\mathrm{1}}{\mathrm{1}+{x}}\Rightarrow\int_{\mathrm{0}} ^{{t}} \mathrm{1}−{x}\leqslant\int_{\mathrm{0}} ^{{t}} \frac{{dx}}{\mathrm{1}+{x}} \\ $$$$\Leftrightarrow{t}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\leqslant{ln}\left(\mathrm{1}+{x}\right);\frac{\mathrm{1}}{\mathrm{1}+{x}}\leqslant\mathrm{1}\Rightarrow{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{\mathrm{2}\left({n}+{k}\right)}−\frac{\mathrm{1}}{\mathrm{8}\left({n}+{k}\right)^{\mathrm{2}} }\leqslant{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}\left({n}+{k}\right)}\right)\leqslant\frac{\mathrm{1}}{\mathrm{2}\left({n}+{k}\right)} \\ $$$$\Rightarrow\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}{n}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}}{{n}}}−\frac{\mathrm{1}}{\mathrm{8}}{T}_{{n}} \leqslant\:{V}_{{n}} \leqslant\frac{\mathrm{1}}{\mathrm{2}{n}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}}{{n}}} \\ $$$$\mathrm{0}\leqslant{T}_{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left({n}+{k}\right)^{\mathrm{2}} }\leqslant\frac{{n}+\mathrm{1}}{{n}^{\mathrm{2}} }\rightarrow\mathrm{0} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{V}_{{n}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{2}{n}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{{k}}{{n}}}{Riemann}\:{Sum}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{x}}{dx}=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$${U}_{{n}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}{e}^{{V}_{{n}} } ={e}^{\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)} =\sqrt{\mathrm{2}} \\ $$$$ \\ $$