Menu Close

a-b-c-a-b-c-1-a-2-1-b-c-b-2-1-a-c-c-2-1-a-b-k-find-k-max-hint-inequality-cauchy-schwarz-




Question Number 205767 by lmcp1203 last updated on 30/Mar/24
  a,b,c ∈ℜ^+     a+b+c=1     a^2 /(1+b+c) + b^2 /(1+a+c)  + c^2 /(1+a+b)≥k  find   k max.  hint : inequality cauchy schwarz
$$ \\ $$$${a},{b},{c}\:\in\Re^{+} \:\: \\ $$$${a}+{b}+{c}=\mathrm{1} \\ $$$$\:\:\:{a}^{\mathrm{2}} /\left(\mathrm{1}+{b}+{c}\right)\:+\:{b}^{\mathrm{2}} /\left(\mathrm{1}+{a}+{c}\right)\:\:+\:{c}^{\mathrm{2}} /\left(\mathrm{1}+{a}+{b}\right)\geqslant{k} \\ $$$${find}\:\:\:{k}\:{max}. \\ $$$${hint}\::\:{inequality}\:{cauchy}\:{schwarz} \\ $$$$ \\ $$
Answered by A5T last updated on 30/Mar/24
Σ(a^2 /(1+b+c))≥(((a+b+c)^2 )/(3+2(a+b+c)))=(1/5)
$$\Sigma\frac{{a}^{\mathrm{2}} }{\mathrm{1}+{b}+{c}}\geqslant\frac{\left({a}+{b}+\mathrm{c}\right)^{\mathrm{2}} }{\mathrm{3}+\mathrm{2}\left({a}+{b}+{c}\right)}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$
Commented by lmcp1203 last updated on 30/Mar/24
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *