Question Number 205770 by hardmath last updated on 30/Mar/24
$$\mathrm{If}\:\:\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{xyz}\:=\:\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\frac{\left(\sqrt{\mathrm{2}}\mathrm{x}\right)^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{xz}\right)\left(\mathrm{1}+\mathrm{xy}\right)}\:+\:\frac{\left(\sqrt{\mathrm{2}}\mathrm{y}\right)^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{yz}\right)\left(\mathrm{1}+\mathrm{xy}\right)}\:+\:\frac{\left(\sqrt{\mathrm{2}}\mathrm{z}\right)^{\mathrm{2}} }{\left(\mathrm{1}+\mathrm{xz}\right)\left(\mathrm{1}+\mathrm{yz}\right)}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$